首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
有机硅混合环硅氧烷色谱-质谱联用定性分析   总被引:1,自引:0,他引:1  
付桂兰  王全 《色谱》1995,13(3):185-187
 通过色谱-质谱联用定性地分析了二甲基硅氧烷和甲基乙烯基硅氧烷混合环体的色谱、质谱特征。讨论了甲基乙烯基环四硅氧烷质谱的离子分裂方式,测定了各种有机环硅氧烷的色谱保留时间(tR),建立了有机硅混合环体色谱-质谱的定性分析方法。  相似文献   

2.
将甲基三氯硅烷和二甲基二氯硅烷分别与二苯基二羟基硅烷反应得到1,1,5,5-四氯-1,5-二甲基-3,3-二苯基三硅氧烷(A)和1,1,5,5-四甲基-1,5-二氯-3,3-二苯基三硅氧烷(B)。按一定比例将(A)和(B)水解缩合得到完全是甲基硅羟基封端树脂(Ⅰ)。将甲基三氯硅烷和甲基三乙酰氯基硅烷分别处理一般共水解法硅封端树脂可得到另外两种甲基硅羟基封端树脂(Ⅱ)和(Ⅲ),将树脂Ⅰ、Ⅱ、Ⅲ与一般共水解法得到的具有相同R/Si和Ph/R(R代表甲基和苯基)的树脂(Ⅳ、Ⅴ、Ⅵ)进行固化试验,结果表明,甲基-硅羟基封端树脂(Ⅰ—Ⅲ)的固化速度为共水解法制得的以苯基硅羟基封端树脂(Ⅳ—Ⅵ)固化速度的两倍以上。  相似文献   

3.
在三氟化硼存在下,三(三甲基硅基)苯基硅烷(Me3Si)3SiC6H4R(R=H,p-Me和p-Me0)与三吡啶三羰基钼反应得到相应的η6-[三(三甲基硅基)苯基硅烷]三羰基钼类化合物矿η6-([Me3 Si)3SiC6H4R]MO(CO)3.利用1H NMR,133C NMR,IR和元素分析对3个化合物进行了鉴定,并...  相似文献   

4.
1,2-二氯四甲基硅锗烷分别与环戊二烯基锂及四甲基环戊二烯基锂反应得到两个新的双齿配体:C5H5Me2SiGeMe2C5H5(9)和C5HMe4Me2SiGeMe2C5HMe4(10).配体9和10分别与Fe(CO)5在二甲苯中加热生成四甲基硅锗桥连双环戊二烯基四羰基二铁(11)和四甲基硅锗桥连双(四甲基环戊二烯基)四羰基二铁(13).11和13均可发生热重排反应,生成[(η^5-C5R4)Fe(CO)2]2(μ-Me2Si)(μ-Me2Ge)(R=H,12;R=Me,14)。测定了化合物11,12,13及14的晶体结构,讨论了桥连四甲基环戊二烯基配体的位阻效应对其某些结构参数以及重排反应性的影响。  相似文献   

5.
联苯基桥连双核茂锆化合物的合成及催化乙烯聚合   总被引:2,自引:0,他引:2  
4,4′-二溴联苯与 n-Bu Li反应得到对 -联苯基二锂 ,再与四甲基环戊烯酮进行羰基加成 ,酸催化脱水 ,一步得到对 -联苯基桥连四甲基环戊二烯配体 4 -( C5Me4H) C6H4-C6H4( C5Me4H ) -4 ( 1 ) .配体 1相继与n-Bu Li和 Zr Cl4反应得到相应的联苯基桥连双 (单茂三氯化锆 ) 4 -( C5Me4Zr Cl3 ) C6H4— C6H4( C5Me4Zr Cl3 ) -4 ,不经分离直接与环戊二烯基锂或茚基锂反应得到相应的双核锆化合物 4 -( C5Me4Zr Cl2 Cp′) C6H4— C6H4·( C5Me4Zr Cl2 Cp′) -4 [Cp′=C5H5( 2 ) ,C9H7( 3) ].研究了在 MAO( Methyl Aluminoxane)助催化下 ,化合物 2和 3对乙烯聚合的催化性能 .化合物 2和 3都显示了非常高的催化活性 ,并在较高的温度下达到最高活性 .  相似文献   

6.
含四-苯基卟啉基团聚酰亚胺膜的光电导性能研究   总被引:2,自引:0,他引:2  
分剐以均苯四酸二酐(PMDA)与四(4-氨基苯基)卟啉(TAPP)/4,4′-二苯醚(ODA)、TAPP/3,6-二氨基-N-甲基咔唑(DACz)聚合得到两个系列含四-苯基卟啉基团(TPP)聚酰亚胺(PI)共聚膜,并时其作为载流子发生层(CGL)制成的感光体的光电导性能进行了测试。结果表明:PI共聚膜的光电导性能随分子链中TPP基团含量的提高而增强;当TPP基团含量相同时,PMDA/TAPP/ODA系列的光电导性能较PMDA/TAPP/DACz系列好;含TPP基团PI共聚膜的光电导性能明显优于四-苯基卟啉分子掺杂体系;在CGL与导电铝基间引入聚甲基丙烯酸甲酯(PMMA)阻挡层(CBL)不能提高感光体的光电导性能。从光电导机理分析了TPP基团、四-苯基卟啉分子的聚集结构与PI膜光电导性能的关系。  相似文献   

7.
通过八甲基环四硅氧烷、六苯基环三硅氧烷和1,3 双(γ 氨基丙基)四甲基二硅氧烷在硅醇钾催化下的开环共聚合,合成了α,ω 双(γ 氨基丙基)聚二甲基二苯基硅氧烷预聚体,并用UV、IR、1H NMR、GPC对其化学结构和一些性质进行了表征和测定.  相似文献   

8.
星形聚硅氧烷的热稳定性研究和结构表征   总被引:3,自引:0,他引:3  
含六苯基环三硅氮烷 (P3N)的聚硅氧烷的低温性能与普通聚硅氧烷相当 .35 0℃ ,封闭氮气中老化2 4h后 ,含P3N 聚硅氧烷的热失重比普通聚硅氧烷低 4~ 10倍 ,随聚合物含氮量增加 ,其失重呈下降趋势 ,最低失重为 1 1% .六苯基环三硅氮烷三锂盐 (P3NLi)引发环硅氧烷聚合得到的含P3N 聚硅氧烷的2 9Si NMR谱、IR谱和分子量 (GPC)与特性粘数的关系证明其具有星形结构  相似文献   

9.
用微波辐射法,合成了5个含有机膦氧基团的离子液体:1-丙基-3-(3-二苯基氧膦基)丙基咪唑双(三氟甲基磺酰基)亚胺盐([PImC3P(O)Ph2][Tf2N])、1-己基-3-(3-二苯基氧膦基)丙基咪唑双(三氟甲基磺酰基)亚胺盐([HImC3P(O)Ph2][Tf2N])、1-丙基-3-(3-苯基乙氧基氧膦基)丙基咪唑双(三氟甲基磺酰基)亚胺盐([PImC3P(O)Ph(OEt)][Tf2N])、1-己基-3-(3-苯基乙氧基氧膦基)丙基咪唑双(三氟甲基磺酰基)亚胺盐([HImC3P(O)Ph(OEt)][Tf2N])和(3-苯基乙氧基氧膦基)丙基三乙胺双(三氟甲基磺酰基)亚胺盐([TENC3P(O)Ph(OEt)][Tf2N])。用31P NMR、1H NMR、13C NMR、MS及FT-IR对产物结构进行了表征。研究了这类离子液体对稀土Nd(III)的萃取性能。结果表明,这类功能化离子液体可作为单一组分萃取稀土而无需加入有机稀释剂,离子液体结构对萃取效率影响很大,相同条件下季铵盐型结构的离子液体[TENC3P(O)Ph(OEt)][Tf2N]对稀土Nd(Ⅲ)的萃取效率最高。稀土溶液pH值对萃取效率影响显著,近中性条件下(pH=6.63),对稀土Nd(Ⅲ)的萃取率最高。用pH=1.00的盐酸溶液可以较好的从离子液体相反萃Nd(Ⅲ),反萃率可达94%。  相似文献   

10.
以甲基丙烯酸烯丙酯和1,1,5,5-四甲基-3,3-二苯基三硅氧烷为原料,硅氢加成得到含苯基硅氧烷的丙烯酸酯单体。采用核磁(1H-NMR)法表征了产物的封端基团,超高效液相色谱三重串联飞行时间质谱法(UPLC-QTof-MS)对不同封端基团产物的具体结构进行分析,鉴定出甲基丙烯酸-3-(1,1,5,5-四甲基-3,3-二苯基-5-甲基丙烯酰氧基三硅氧基)丙酯、1,1,5,5-四甲基-1,5-二(γ-甲基丙烯酰氧丙基)-3,3-二苯基三硅氧烷和甲基丙烯酸-3-(1,1,5,5-四甲基-5-丙基-3,3-二苯基三硅氧基)丙酯3个主要组分。建立了有机硅改性丙烯酸酯类功能材料的定性分析方法,对其进一步开发利用及其反应机理研究方面具有重要的指导意义。  相似文献   

11.
The preparation and structural characterization of scandium and f-element complexes derived from the disiloxanediolate dianion, [(Ph2SiO)2O]2-, are reported. Reactions of in situ prepared Ln[N(SiMe3)2]3 (Ln = Eu, Sm, Gd) with (Ph2SiOH)2O in different stoichiometries afforded the lanthanide disiloxanediolates [Eu[[(Ph2SiO)2O]Li(Et2O)]3] (1), [[[(Ph2SiO)2O]Li(dme)]2SmCl(dme)] (2), and [[[((Ph2SiO)2O]Li(thf)2]2GdN(SiMe3)2] (3). In situ formed (Ph2SiOLi)2O reacted with anhydrous NdBr3 (molar ratio 3:1) to give polymeric [[Nd[(Ph2SiO)2O]3[mu-Li(thf)]2[mu2LiBrLi(thf)(Et2O)]]n] (4). Treatment of 3 with Ph2Si(OH)2 in the presence of acetonitrile yielded the dilithium trisiloxanediolate derivative [[Ph2Si(OSiPh2O)2][Li(MeCN)]2]2 (5), which according to an X-ray analysis displays an Li4O4 heterocubane structure. The trinuclear scandium complex [[[(Ph2SiO)2O]Sc(acac)2]2Sc(acac)] (6) was obtained by reaction of [(C5Me5)Sc(acac)2] (C5Me5 = eta5-pentamethylcyclopentadienyl) with (Ph2SiOH)2O in a 3:2 molar ratio. Selective formation of the colorless uranium(VI) derivative [U[Ph2Si(OSiPh20)2]2[(Ph2SiO)2O]] (7) was observed when uranocene, U(eta8-C8H8)2, was allowed to react with (Ph2SiOH)2O. An X-ray diffraction study of the solvated derivative [U[Ph2Si(OSiPh2O)2]2[(Ph2SiO)2O]].Et2O.TMEDA (TMEDA= N,N,N',N'-tetramethyl-ethylenediamine) (7a) revealed the presence of both the original [(Ph2SiO)2O]2- dianion as well as the ring-enlarged [Ph2Si(OSiPh2O)2]2- ligand in the same molecule.  相似文献   

12.
The syntheses and structures of zirconium and titanium complexes containing the novel chelating trisilane-1,3-diolate ligand [Me2Si(R2SiO)2]2- (R = SiMe3) (5)-H2 are reported. The chloride complexes [Me2Si(R2SiO)2]TiCl2 (7a) and [Me2Si(R2SiO)2]ZrCl2 x 2 THF (7b) were prepared by the reaction of MCl4 (M = Ti, Zr) with [Me2Si(R2SiO)2]2Ti (6a) and [Me2Si(R2SiO)2]2Zr (6b), which are derived from the reaction of 5 with M(NEt2)4, respectively. In the presence of TiCl4, complexes 6a and 7a undergo a ring-opening reaction to produce the dinuclear complex [Me2Si(R2SiO)2][TiCl3]2 (9). [Me2Si(R2SiO)2]TiMe2 (10) and [Me2Si(R2SiO)2]TiBnz2 (11) were prepared in moderate yields from reactions of 7a with 2 equiv of MeMgBr and BnzMgCl, respectively. According to NMR spectroscopic investigations, the reaction of the dimethyltitanium complex 10 with B(C6F5)3 led to full exchange of both methyl groups by C6F5 groups under quantitative formation of [Me2Si(R2SiO)2]Ti(C6F5)2 (12) and a mixture of B(C6F5)(3-n)Me(n), where n = 1-3. The structure of 12 is further evidenced by the preparation of an identical sample from the reaction of 7a with 2 equiv of C6F5MgBr. Refluxing an ether solution of 12 surprisingly gave [Me2Si(R2SiO)2]2TiC6F5]2O (13) as a result of ether cleavage. The structures of the complexes 7a, 7b, 9, 10, and 13 were determined by X-ray crystallography, and structural discussion of the bond parameters will be given.  相似文献   

13.
A series of new (silylamino)phosphines that contain sterically bulky silyl groups on nitrogen were prepared by deprotonation/substitution reactions of the hindered disilylamines t-BuR(2)Si(Me(3)Si)NH (1, R = Me; 2, R = Ph) and (Et(3)Si)(2)NH (3). Sequential treatment of the N-lithio derivatives of 1-3 with PCl(3) or PhPCl(2) and MeLi gave the corresponding (silylamino)phosphines t-BuR(2)Si(Me(3)Si)NP(R')Me (5, R = Me, R' = Ph; 6, R = Ph, R' = Me) and (Et(3)Si)(2)NP(R)Me (11, R = Me; 12, R = Ph) in high yields. Two of the P-chloro intermediates t-BuR(2)Si(Me(3)Si)NP(Ph)Cl (7, R = Ph; 9, R = Me) were also isolated and fully characterized. Hydrolysis of 7 afforded the crystalline PH-substituted aminophosphine oxide t-BuPh(2)SiN(H)P(Ph)(=O)H (10). Thermal decomposition of 7 occurred with elimination of Me(3)SiCl and formation of a novel P(2)N(2) four-membered ring system (36) that contains both P(III) and P(V) centers. Reactions of the N-lithio derivatives of amines 1 and 2 with phosphorus trihalides afforded the thermally stable -PF(2) derivatives t-BuR(2)Si(Me(3)Si)NPF(2) (13, R = Me; 14, R = Ph) and the unstable -PCl(2) analogue 17 (R = Ph). Reduction (using LiAlH(4)) of the SiPh-substituted dihalophosphines 14 and 17 gave the unstable parent phosphine t-BuPh(2)Si(Me(3)Si)NPH(2) (15). The P-organo-substituted (silylamino)phosphines underwent oxidative bromination to afford high yields of the corresponding N-silyl-P-bromophosphoranimines t-BuR(2)SiN=P(R')(Me)Br (18, R = R' = Me; 19, R = Me, R' = Ph; 20, R = Ph, R' = Me) and Et(3)SiN=P(R)(Me)Br (23, R = Me; 24, R = Ph). Subsequent treatment of these reactive PBr compounds with lithium trifluoroethoxide or phenoxide produced the corresponding PO derivatives t-BuR(2)SiN=P(R')(Me)OR' ' (25 and 26, R' ' = CH(2)CF(3); 28-30, R' ' = Ph) and Et(3)SiN=P(R)(Me)OR' (31 and 33, R' = CH(2)CF(3); 32 and 34, R = Ph), respectively. Many of the new compounds containing the bulky tert-butyldiphenylsilyl group, t-BuPh(2)Si, were solids that gave crystals suitable for X-ray diffraction studies. Consequently, the crystal structures of three (silylamino)phosphines (6, 7, and 14), one (silylamino)phosphine oxide (10), one N-silylphosphoranimine (30), and the cyclic compound 36 were determined. Among the (silylamino)phosphines, the P-N bond distances [6, N-PMe(2), 1.725(3) A; 7, N-P(Ph)Cl, 1.68(1) A, 14, N-PF(2), 1.652(4) A] decreased significantly as the electron-withdrawing nature of the phosphorus substituents increased. The N-silylphosphoranimine t-BuPh(2)SiN=PMe(2)OPh (30), which is a model system for poly(phosphazene) precursors, had a much shorter P=N distance of 1.512(6) A and a wide Si-N-P bond angle of 166.4(3) degrees. A similar P=N bond distance [1.514(7) A] and Si-N-P angle [169.9(6) degrees ] were observed for the exocyclic P=N-Si linkage in the ring compound 36, while the phosphine oxide 10 had P-N and P=O distances of 1.637(4) and 1.496(3) A, respectively, and a Si-N-P angle of 134.3(2) degrees.  相似文献   

14.
Reaction of [Ln(CH(2)SiMe(3))(3)(thf)(2)] (Ln=Y, Yb, and Lu) with one equivalent of Me(2)Si(C(5)Me(4)H)NHR' (R'=Ph, 2,4,6-Me(3)C(6)H(2), tBu) affords straightforwardly the corresponding half-sandwich rare-earth metal alkyl complexes [{Me(2)Si(C(5)Me(4))(NR')}Ln(CH(2)SiMe(3))(thf)(n)] (1: Ln = Y, R' = Ph, n=2; 2: Ln = Y, R' = C(6)H(2)Me(3)-2,4,6, n=1; 3: Ln = Y, R' = tBu, n=1; 4: Ln = Yb, R' = Ph, n=2; 5: Ln = Lu, R' = Ph, n=2) in high yields. These complexes, especially the yttrium complexes 1-3, serve as excellent catalyst precursors for the catalytic addition of various primary and secondary amines to carbodiimides, efficiently yielding a series of guanidine derivatives with a wide range of substituents on the nitrogen atoms. Functional groups such as C[triple chemical bond]N, C[triple chemical bond]CH, and aromatic C--X (X: F, Cl, Br, I) bonds can survive the catalytic reaction conditions. A primary amino group can be distinguished from a secondary one by the catalyst system, and therefore, the reaction of 1,2,3,4-tetrahydro-5-aminoisoquinoline with iPrN==C==NiPr can be achieved stepwise first at the primary amino group to selectively give the monoguanidine 38, and then at the cyclic secondary amino unit to give the biguanidine 39. Some key reaction intermediates or true catalyst species, such as the amido complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y(NEt(2))(thf)(2)] (40) and [{Me(2)Si(C(5)Me(4))(NPh)}Y(NHC(6)H(4)Br-4)(thf)(2)] (42), and the guanidinate complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrNC(NEt(2))(NiPr)}(thf)] (41) and [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrN}C(NC(6)H(4)Br-4)(NHiPr)}(thf)] (44) have been isolated and structurally characterized. Reactivity studies on these complexes suggest that the present catalytic formation of a guanidine compound proceeds mechanistically through nucleophilic addition of an amido species, formed by acid-base reaction between a rare-earth metal alkyl bond and an amine N--H bond, to a carbodiimide, followed by amine protonolysis of the resultant guanidinate species.  相似文献   

15.
Nongeminally substituted cyclic phosphazenes with various haloalkyl substituents were prepared using deprotonation-substitution reactions at the methyl groups of the cis isomers of nongeminally substituted cis-[Me(Ph)P=N]3, 2. Treatment of 2 with n-BuLi followed by reaction with organic halogenated reagents (RX=C2Cl6, BrC(O)CMe2Br, and ICH2COOEt) at low temperature afforded the various cyclic derivatives cis-[(XCH2)(Ph)PN]3 (3, X=Cl, 4, Br, and 5, I). The mono- and dibromoalkyl derivatives, cis-[Ph3(BrCH2)Me2P3N3], 6, and [Ph3(BrCH2)2MeP3N3], 7, were also isolated along with 4 when the electrophile was dibromoethane. Reaction of cis-[Ph(BrCH2)PN]3, 4, with KSC(O)Me gave cis-[Ph(MeC(O)SCH2)PN]3, 8. The structures of all the cis cyclic phosphazenes were determined by NMR spectroscopy and X-ray diffraction. All retained the basketlike shape with the hydrophobic phenyl groups opposite the haloalkyl groups on the P3N3 ring. Thermal analysis of the new cyclic trimers indicates that ring-opening polymerization does not occur. The melting points and the thermal stabilities of haloalkyl cyclophosphazenes were higher than those of the parent compound 2.  相似文献   

16.
Heating pure samples of the cyclic phosphazenes, cis- or trans-[Me(Ph)PN](3), yielded mixtures of the cis and trans isomers of the cyclic phosphazene trimers, [Me(Ph)PN](3), and all four geometric isomers of the tetramers, [Me(Ph)PN](4). Varying the temperature and heating times changes the ratio of these components. Following the thermolysis by NMR spectroscopy indicated that only a mixture of the two isomeric trimers occurred initially. Longer heating times produced mixtures of the isomers of the tetramer. Column chromatography and solubility differences were used to separate each of the isomers of the tetramer. Spectroscopic and X-ray crystallographic studies suggest that the four different geometrical isomers of the tetramer can be described as cone, partial cone, 1,2-alternate, and 1,3-alternate by analogy to calix[4]arene.  相似文献   

17.
The hypervalent adducts of SiF(4), trans-[SiF(4)(R(3)PO)(2)] (R = Me, Et or Ph), cis-[SiF(4){R(2)P(O)CH(2)P(O)R(2)}] (R = Me or Ph), cis-[SiF(4)(pyNO)(2)] and trans-[SiF(4)(DMSO)(2)] have been prepared from SiF(4) and the ligands in anhydrous CH(2)Cl(2), and characterised by microanalysis, IR and VT multinuclear ((1)H, (19)F, (31)P) NMR spectroscopy. The NMR studies show extensive dissociation at ambient temperatures in non-coordinating solvents, but mixtures of cis and trans isomers of the monodentate ligand complexes were identified at low temperatures. Crystal structures are reported for trans-[SiF(4)(R(3)PO)(2)] (R = Me or Ph), and cis-[SiF(4)(pyNO)(2)]. The GeF(4) analogues cis-[GeF(4){R(2)P(O)(CH(2))(n)P(O)R(2)}] (R = Me or Ph, n = 1; R = Ph, n = 2) were similarly characterised and the structures of cis-[GeF(4){R(2)P(O)CH(2)P(O)R(2)}] (R = Me or Ph) determined. The reaction of R(3)AsO (R = Me or Ph) with SiF(4) does not give simple adducts, but forms [R(3)AsOH](+) cations as fluorosilicate salts. SiF(4) adducts of some ether ligands (including THF, 12-crown-4) were also characterised by (19)F NMR spectroscopy in solution at low temperatures (~190 K), but are fully dissociated at room temperature. Attempts to isolate, or even to identify, SiF(4) adducts with phosphine or thioether ligands in solution at 190 K were unsuccessful, contrasting with the recent isolation and detailed characterisation of GeF(4) analogues. The chemistry of SiF(4) with these oxygen donor ligands, and with soft donors (P, As, S or Se), is compared and contrasted with those of GeF(4), SnF(4) and SiCl(4). The key energy factors determining stability of these complexes are discussed.  相似文献   

18.
The reactions of Me(3)SiN=P(OR")RR'(R" = Ph, CH(2)CF(3); R, R' = Me, Ph) with alcohols were investigated. With nonequivalent amounts of CF(3)CH(2)OH, the reactions produced high yields of the cyclic phosphazene (Me(2)PN)(3) and both the cis and trans isomers of nongeminally substituted [(Ph)(Me)PN](3). The isomers of this new cyclic phosphazene were separated by column chromatography and characterized by NMR and IR spectroscopy, elemental analysis, and X-ray crystallography. Crystals of the cis isomer 6a have a monoclinic crystal system, while the trans isomer 6b has a triclinic crystal system with two different molecules in an asymmetric unit. The bond lengths and bond angles are very similar to those of the simpler cyclic trimers (Me(2)PN)(3) and (Ph(2)PN)(3.) A likely pathway for the formation of these compounds is discussed.  相似文献   

19.
A series of new nongeminally-substituted cyclic phosphazenes with various substituents has been prepared via deprotonation-substitution reactions at the Me groups of both the cis and trans isomers of [(Me)(Ph)PN] 3 . Treatment of [(Me)(Ph)PN] 3 with n-BuLi followed by reaction with organic electrophilic reagents affords a variety of cyclic derivatives, [(RCH 2 )(Ph)PN] 3 , [R = Me, Cl, Br, I, (CH 2 ) 2 Br, CH 2 CH═CH 2 , SR, C(═O)OLi, C(═O)OMe, C(═O)OEt]. The structures of theses cis cyclic phosphazenes, which were obtained by x-ray diffraction, illustrate the basket-like shape of the molecules. Heating the cis and trans isomers of the parent [(Me)(Ph)PN] 3 produced mixtures of cyclic trimers and tetramers. The latter were isolated and characterized by x-ray crystallography. Nanoparticles of gold and silver were prepared by reduction of metal salts with a reducing agent in the presence of selected trimers.  相似文献   

20.
Acid-catalysed hydrolysis of [CH2[(Sn(Ph2)CH2Si(OiPr)Me2]2] followed by subsequent reaction with mercuric chloride in acetone afforded the novel silicon- and tin-containing eight-membered ring [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] in good yield, the crystal structure of which is reported. 119Sn NMR and X-ray studies indicate that [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] acts as a bidentate Lewis acid towards chloride ions exclusively forming the 1:1 complex [(Ph3P)2N]+[cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2OCl]- upon addition of [(Ph3P)2N]+Cl- . Also reported are the synthesis and structure of [K(dibenzo[18]crown-6)]+[cyclo-CH2(Sn(Cl2)CH2Si(Me2)]2OF]-, the first completely characterised organostannate with a C2SnCl2F- substituent pattern. No ring-opening polymerisation could be achieved for [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] or for its perphenylated derivative [cyclo-CH2[Sn(Ph2)CH2Si(Me2)]2O]. The reaction of [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] with Me3O+BF4- gave the tin-containing fluorosilane [CH2[Sn(Cl2)CH2Si(F)Me2]2], in which the Si-F bond is activated by intermolecular Si-F...Sn interactions in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号