首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seven group 14 element(IV) compounds 2-7 have been prepared, derived either (2-5) from the potassium β-diketiminate K(L) [L = {N(Ar)C(Me)}2CH, Ar = C6H3Pri2-2,6] (1) or the known lithium β-dialdiminate Li(L′)] [L′ = {N(Ar)C(H)}2CPh, Ar = C6H3Pri2-2,6]. Treatment of 1 with ButC(O)Cl, Me3SiCl, Ph3SnCl, or Me3SnCl afforded {N(Ar)C(Me)}2C(H)C(O)But (2), [ArNC(Me)C(H)C(Me)N(Ar)SiMe3] (3), [HN(Ar)C(Me)C(H)C(CH2SnPh3)N(Ar)] (4), or (5), respectively. Compounds 4 and 5 are remarkable as they have arisen from a tautomer of 1; crystalline centrosymmetric 5 has a fused tricyclic structure, a central eight-membered ring flanked by two six-membered rings. The compounds [GeCl2(L′)(OGeCl3)] (6) or [SnCl(L′)Me2] (7), the first group 14 metal β-dialdiminates, were obtained from Li(L′) and (GeCl3)2O or Me2SnCl2, respectively. The Sn(II) compound SnCl(L′) (8) was prepared from SnCl2 and K(L′). The molecular structures of the crystalline compounds 3-8 are reported.  相似文献   

2.
The organotin (IV) derivatives of 2-mercapto-4-methylpyrimidine (Hmpymt) R3SnL (R = Ph 1, PhCH22, n-Bu 3), R2SnClmLn (m = 1, n = 1, R = CH34, Ph 5, n-Bu 6, PhCH27; m = 0, n = 2, R = CH38, n-Bu 9, Ph 10, PhCH211) were obtained by the reaction of the organotin(IV) chlorides R3SnCl or R2SnCl2 with 2-mercapto-4-methylpyrimidine hydrochloride (HCl · Hmpymt) in 1:1 or 1:2 molar ratio. All complexes 1-11 were characterized by elemental analyses, IR, 1H, 13C and temperature-dependent 119Sn NMR spectra. Except for complexes 3 and 6, the structures of complexes 1, 2, 4, 5, 7, 8-11 were confirmed by X-ray crystallography. Including tin-nitrogen intramolecular interaction, the tin atoms of complexes 1-7 are all five-coordinated and their geometries are distorted trigonal bipyramidal. While the tin atoms of complexes 8-11 are six-coordinated and their geometries are distorted octahedral. Besides, the ligand adopts the different coordination modes to bond to tin atom between the complexes 1, 6, 7 and 2, 3, 4, 5, 8-11. Furthermore, intermolecular Sn?N or Sn?S interactions were recognized in crystal structures of complexes 4, 7 and 11, respectively.  相似文献   

3.
Treatment of [LOEtTi(OTf)3] (, OTf = triflate) with S-binapO2 (binap = 2,2′-bis(diphenylphosphinoyl)-1,1′-binaphthyl) afforded the terminal hydroxo complex [LOEtTi(S-binapO2)(OH)][OTf]2 (1). Treatment of [LOEtTi(OTf)3] with K(tpip) (tpip = [N(Ph2PO)2]) afforded [LOEtTi(tpip)(OTf)][OTf] (2) that reacted with CsOH to give [LOEtTi(tpip)(OH)][OTf] (3). The structures of 1 and 2 have been determined.  相似文献   

4.
Three novel phosphoramidate ligands with formula , R = Nicotinamide(nia), R′ = NHC(CH3)3(L1), NH(C6H11) (L2); R = isonicotinamide(iso), NH(C6H11) (L3) and their new organotin(IV) complexes with formula SnCl2(CH3)2(X)2, X = L1 (C1), L2 (C2), L3 (C3) plus SnCl2(CH3)2(L4)2(C4), L4 = isoP(O)[NHC(CH3)3]2, were synthesized and characterized by 1H, 13C, 31P,119Sn NMR, IR, UV-Vis spectroscopy and elemental analysis. Two novel complexes of nia and iso with formula SnCl2(CH3)2(X)2, X = nia (C5), iso (C6) were also prepared and all the complexes were spectroscopically studied in comparison to their related ligands and to each other. The crystal structure of complexes C1, C3, C4, and C5 were determined by X-ray crystallography. -Sn-Cl···H-N- major hydrogen bonds beside other electrostatic interactions produced a three dimensional polymeric cluster in the crystalline lattice of C1, C3, C5 and a two dimensional polymeric chain in C4. Results showed that coordination of the phosphoramidate ligand (L4) to Sn in C4 has been occurred from the nitrogen site of the pyridine ring similar to C5,C6 in which there is no PO donor site; however, in C1 and C3 the active donor site of corresponding ligands is PO. It seems that in these complexes there is a competition between PO and Npyridine donor sites and the influential factor which determines the winner site is the type of substituents on phosphorus atom.  相似文献   

5.
Treatment of [Cp∗Ir(ppy)Cl] (Cp∗ = η5-C5Me5, ppyH = 2-(2-pyridyl)phenyl) with Ag(OTf) (OTf− = triflate) in MeOH and MeCN gave the solvento complexes [Cp∗Ir(ppy)(solv)][OTf] (solv = MeOH (1) and MeCN (2)). Complex 1 is capable of catalyzing oxidation and azirdination of styrene with PhIO and PhINTs (Ts = tosyl), respectively. Treatment of 2 with a stoichiometric amount of PhINTs resulted in the insertion of the NTs group into the Ir-C(ppy) bond and formation of [Cp∗Ir(η2-ppy-NTs)(MeCN)][OTf] (3). Treatment of 1 with R2E2 afforded [Cp∗Ir(ppy)(η1-R2E2)][OTf] (E = S (4), Se (5), Te (6)). Reactions of 4 and 5 with Ag(OTf) resulted in cleavage of the E-E bond and insertion of an ER group into the Ir-C(ppy) bond. The crystal structures of complexes 2-6 and [Cp∗Ir(η2-ppy-S-p-tol)(H2O)][OTf]2 have been determined.  相似文献   

6.
We report the use of triorganotin fragments R2L1-2Sn containing N,C,N and O,C,O-ligands L1-2(L1 = C6H3(Me2NCH2)2-2,6, L2 = C6H3(tBuOCH2)2-2,6) on stabilization of both thiol-form in R2L1-2Sn-2-SPy (2-SPy = pyridine-2-thiolate) and thione-form in R2L1-2Sn(mimt) (mimt = 1-methylimidazole-2-thiolate) of the polar groups. Treatment of ionic organotin compounds [Me2L1Sn]+[Cl] (1) and [Ph2L2Sn]+[OTf] (2) with appropriate sodium salts Na-2-SPy and Na(mimt) resulted in the isolation of Me2L1Sn-2-SPy (3), Ph2L2Sn-2-SPy (4), Me2L1Sn(mimt) (5), Ph2L2Sn(mimt) (6). While polar group 2-SPy exists in its thiol-tautomeric form in compounds 3 and 4, the second polar group (mimt) has been stabilized as the thione-tautomeric form by triorganotin fragments R2L1-2Sn in compounds 5 and 6. The products were characterized by 1H, 13C and 119Sn NMR and IR spectroscopy, ESI/MS, elemental analyses and structures of 3, 6 were determined by X-ray diffraction study. The reactivity of compound 4 containing non-coordinated nitrogen atom of 2-SPy polar group towards CuCl and AgNO3 is also reported. The reactions led to isolation of organotin compounds Ph2L2SnCl (7) and Ph2L2SnNO3 (8) as the result of polar group transfer. The mechanism of this reaction has been investigated and compounds Ph3Sn-2-SPy (9) and Ph2L2Sn-4-SPy (10) (4-SPy = pyridine-4-thiolate) have been prepared for this purpose.  相似文献   

7.
Complexes of three related 1-azapentadienyl ligands [N(SiMe2R1)C(But)(CH)3SiMe2R], abbreviated as L (R = But, R= Me), L′ (R = Me = R1), and L″ (R = But = R1), are described. The crystalline compounds Sn(L)2 (1), Sn(L′)2 (2), [Sn(L′)(μ-Cl)]2 (3) and [Sn(L″)(μ-Cl)]2 (4) were prepared from SnCl2 and 2 K(L), 2 K(L′), K(L′) and K(L″), respectively, in thf. Treatment of the appropriate lithium 1-azapentadienyl with Si(Cl)Me3 yielded the yellow crystalline Me3Si(L) (5) and the volatile liquid Me3Si(L′) (6) and Me3Si(L″) (7), each being an N,N,C-trisilyldieneamine. The red, crystalline Fe(L)2 (8) and Co(L′)2 (9) were obtained from thf solutions of FeCl2 with 2 Li(L)(tmeda) and CoCl2 with 2 K(L′), respectively. Each of 1-9 gave satisfactory C, H, N analyses; 6 and 7 (GC-MS) and 1, 2, 8 and 9 (MS) showed molecular cations and appropriate fragments (also 3 and 4). The 1H, 13C and 119Sn NMR (1-4) and IR spectra support the assignment of 1-4 as containing Sn-N(SiMe2R1)-C(But)(CH)3SiMe2R moieties and 5-7 as N(SiMe3)(SiMe2R1)C(But)(CH)3SiMe2R molecules; for 1-4 this is confirmed by their X-ray structures. The magnetic moments for 8 (5.56 μB) and 9 (2.75 μB) are remarkably close to the appropriate Fe and Co complex [M{η3-N(SiMe3)C(But)C(H)SiMe3}2]; hence it is proposed that 8 and 9 have similar metal-centred, centrosymmetric, distorted octahedral structures.  相似文献   

8.
The Sn(IV) butyl complexes [BunSnCl3 − n(NCN)] (NCN = [C6H3(CH2NMe2)2-2,6], n = 1 (1), 2 (2), 3 (3)) were prepared. Spectroscopic analysis of 1-3 by 1H and 119Sn NMR gave evidence for the presence of intramolecular N → Sn interactions in solution. The molecular structure of 1, as determined by a single-crystal X-ray diffraction study, revealed that it contained a six-coordinate Sn(IV) center with intramolecular N → Sn coordination of both ortho-amine substituents. Addition of SnCl4 to 1 resulted in the isolation of the HCl adduct [BuSnCl3(NCN+H)] (6). Reactions of 2 and 3 with SnCl4 each resulted in the HCl salt [SnCl4(NCN+H)] (8) and the corresponding butyltin chloride, Bu2SnCl2 and Bu3SnCl, respectively. The formation of HCl adducts 6 and 8 was ascribed to transfer of the NCN ligand to SnCl4 and the presence of HCl (from partial hydrolysis of the product or SnCl4 during the work up procedure). The molecular structures of 6 and 8 have been determined through single-crystal X-ray diffraction and revealed the presence of a [BuSnCl3(aryl)] or [SnCl4(aryl)] stannate anion, respectively, with in each case one coordinated ortho-amine function and one protonated amine moiety involved in N-H?Cl-Sn hydrogen bonding in both compounds (2.14 Å for 6 and 2.18 Å for 8).  相似文献   

9.
A series of bis-cyclometalated Ir(III) complexes (8-10, 12, 15, 17, 19, 21, 23, 25, 28, 29 and 33) bearing two chromophoric NC cyclometalated ligands derived from 2-(3,5-bis(trifluoromethyl)phenyl)-4-methylpyridine (1) and a third nonchromophoric ligand has been synthesized. A palladium-catalyzed cross-coupling reaction between 2-chloro-4-methylpyridine (2) and 3,5-bis(trifluoromethyl)phenylboronic acid (3) was used to prepare 2-(3,5-bis(trifluoromethyl)phenyl)-4-methylpyridine (1). Cyclometalation of (1) by IrCl3 was carried out in (MeO)3PO, with the formation of chloro-bridged dimer [NC]2Ir(μ-Cl)2Ir[CN]2 (8). Reaction of (8) with lithium 2,4-pentanedionate, lithium 2,2,6,6-tetramethyl-heptane-3,5-dionate (13), dipivaloyltrimethylsilylphosphine (14), 2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-octadione (16), 1,1,1,3,3,3-hexafluoro-2-pyridin-2-yl-propan-2-ol (18), 1,1,1,3,3,3-hexafluoro-2-pyrazol-1-ylmethyl-propan-2-ol (20), 2-diphenylphosphanylethanol (22), and 1-diphenylphosphanylpropan-2-ol (24), afforded octahedral iridium complexes 9, 12, 15, 17, 19, 21, 23 and 25, respectively. Complex 10, which contains three different ligands (L1 = NC of 1; L2 = NC of 4,4′-dimethyl-[2,2′]bipyridinyl 4; L3 = OO of 2,4-pentanedione), and complex 11, which contains no cyclometalated ligands (L1 = 4; L2 = L3 = Cl; L4 = OO of 2,4-pentanedione) were also isolated as minor products in a one-pot reaction between a 94:5 mixture of 1 and 4, IrCl3 and lithium 2,4-pentanedionate. Reaction of 8 with diphenylphosphanylmethanol (27) in 1,2-dichloroethane unexpectedly led to complexes 28 and 29. The reactions of 8 with benzoylformic acid resulted in the formation of hydroxyl-bridged dimer [NC]2Ir(μ-OH)2Ir[CN]2 (33). According to X-ray analyses, Ir-to-Ir distances in the crystal cell increase from 6.86 Å for 10 to 13.31 Å for 33. The angle theta, which represents the twisting of two cyclometalated C-Ir-N planes relative to each other, varies from 97.5° for 21 to 90.76 for complex 28. OLED devices were fabricated from several Ir complexes and preliminary results are discussed.  相似文献   

10.
The reactions of organoantimony chlorides L1,2SbCl21 and 2 ([2,6-(ROCH2)2C6H3], R = Me; L1 and R = t-Bu; L2) with silver salts of selected carboxylic acids resulted to corresponding organoantimony carboxylates L1,2Sb(OOCR′)2, 1a-c (for L1) and 2a-c (for L2), where R′ = CH3 for 1a, 2a; R′ = CHCH2 for 1b, 2b and R′ = CF3 for 1c, 2c. All compounds were characterized by the help of elemental analysis, ESI-MS, 1H and 13C NMR spectroscopy. The solid state structure investigation using single crystal X-ray diffraction techniques (2a, c) and IR spectroscopy revealed significant differences in coordination mode of both O,C,O chelating ligand and carboxylic groups in this set of compounds. The structure of all compounds in solution of non-coordinating solvent (CDCl3) was determined by means of variable temperature 1H, 13C, 19F NMR spectroscopy and IR spectroscopy.  相似文献   

11.
Two mononuclear and one dinuclear copper(II) complexes, containing neutral tetradentate NSSN type ligands, of formulation [CuII(L1)Cl]ClO4 (1), [CuII(L2)Cl]ClO4 (2) and [CuII2(L3)2Cl2](ClO4)2 (3) were synthesized and isolated in pure form [where L1 = 1,2-bis(2-pyridylmethylthio)ethane, L2 = 1,3-bis(2-pyridylmethylthio)propane and L3 = 1,4-bis(2-pyridylmethylthio)butane]. All these green colored copper(II) complexes were characterized by physicochemical and spectroscopic methods. The dinuclear copper(II) complex 3 changed to a colorless dinuclear copper(I) species of formula [CuI2(L3)2](ClO4)2,0.5H2O (4) in dimethylformamide even in the presence of air at ambient temperature, while complexes 1 and 2 showed no change under similar conditions. The solid-state structures of complexes 1, 2 and 4 were established by X-ray crystallography. The geometry about the copper in complexes 1 and 2 is trigonal bipyramidal whereas the coordination environment about the copper(I) in dinuclear complex 4 is distorted tetrahedral.  相似文献   

12.
Four cyclometalated Pt(II) complexes, i.e., [(L2)PtCl] (1b), [(L3)PtCl] (1c), [(L2)PtCCC6H5] (2b) and [(L3)PtCCC6H5] (2c) (HL2 = 4-[p-(N-butyl-N-phenyl)anilino]-6-phenyl-2,2′-bipyridine and HL3 = 4-[p-(N,N′-dibutyl-N′-phenyl)phenylene-diamino]-phenyl-6-phenyl-2,2′-bipyridine), have been synthesized and verified by 1H NMR, 13C NMR and X-ray crystallography. Unlike previously reported complexes [(L1)PtCl] (1a) and [(L1)PtCCC6H5] (2a) (HL1 = 4,6-diphenyl-2,2′-bipyridine), intense and continuous absorption bands in the region of 300-500 nm with strong metal-to-ligand charge transfer (1MLCT) (dπ(Pt) → π(L)) transitions (ε ∼ 2 × 104 dm3 mol−1 cm−1) at 449-467 nm were observed in the UV-Vis absorption spectra of complexes 1b, 1c, 2b and 2c. Meanwhile, with the introduction of electron-donating arylamino groups in the ligands of 1a and 2a, complexes 1b and 2b display stronger phosphorescence in CH2Cl2 solutions at room temperature with bathochromically shifted emission maxima at 595 and 600 nm, relatively higher quantum yields of 0.11 and 0.26, and much longer lifetimes of 8.4 and 4.5 μs, respectively. An electrochromic film of 1b-based polymer was obtained on Pt or ITO electrode surface, which suggests an efficient oxidative polymerization behavior. An orange multilayer organic light-emitting diode with 1b as phosphorescent dopant was fabricated, achieving a maximum current efficiency of 11.3 cd A−1 and a maximum external efficiency of 5.7%. The luminescent properties of complexes 1c and 2c are dependent on pH value and solvent polarity, which is attributed to the protonation of arylamino units in the C^N^N cyclometalating ligands.  相似文献   

13.
The Sn(IV) R2SnCl2(γ-pyrone)n [R = Me or Ph; γ-pyrone = 4H-pyran-4-one (PYR) or 2,6-dimethyl-4H-pyran-4-one (DMP); n = 1 or 2] adducts have been synthesized and investigated. The adducts Ph2SnCl2(PYR) (1), Me2SnCl2(PYR)2 (2), Ph2SnCl2(DMP) (3) and Me2SnCl2(PYR)(PNO) (4), (PNO = 4-methylpyridine N-oxide) have been prepared by the addition of the corresponding γ-pyrone to chloroform solution of R2SnCl2. The new compounds have been characterized by elemental analysis and spectroscopic (IR, 1H, 13C NMR and Mössbauer) means. The single-crystal diffraction study of 1 shows the Sn(IV) to be five-coordinate, [Sn-O and Sn-Cl(1), Sn-Cl(2) distances of 2.3190(13) and 2.4312(6), 2.3653(7), respectively], and the Cl-Sn-Cl bond angle to be 91.17°. The reactivity of 2 towards bipy, Ph3PO, QNO (Q = quinoline) resulted in complete displacement of PYR and formation of already known compounds whereas, the PNO displaced only one equivalent of PYR, causing the preparation of the new mixed complex 4, possibly through a SN1 formation mechanism. DFT/B3LYP molecular orbital calculations were carried out for the 1-4 complexes, their precursors, Ph2SnCl2, (5) and Me2SnCl2, (6) and the ligands, PYR, DMP and PNO in an attempt to explain the structures and reactivity of the complexes. Optimized resulting geometries, vibrational frequencies, and the electron-accepting ability of the complexes and the precursors towards nucleophiles are discussed.  相似文献   

14.
1,8-Naphthyridine (napy) and terpyridine-analogous (N,N,C) tridentate ligands coordinated ruthenium (II) complexes, [RuL(napy-κ2N,N′) (dmso)](PF6)2 (1: L=L1=N″-methyl-4′-methylthio-2,2′:6′,4″-terpyridinium, 2: L = L2 = N″-methyl-4′-methylthio-2,2′:6′,3″-terpyridinium) were prepared and their chemical and electrochemical properties were characterized. The structure of complex 1 was determined by X-ray crystallographic study, showing that it has a distorted octahedral coordination style. The cyclic voltammogram of 1 in DMF exhibited two reversible ligand-localized redox couples. On the other hand, the CV of 2 shows two irreversible cathodic peaks, due to the Ru-C bond of 2 containing the carbenic character. The IR spectra of 1 in CO2-saturated CH3CN showed the formation of Ru-(η1-CO2) and Ru-CO complexes under the controlled potential electrolysis of the solution at −1.44 V (vs. Fc/Fc+). The electrochemical reduction of CO2 catalyzed by 1 at −1.54 V (vs. Fc/Fc+) in DMF-0.1 M Me4NBF4 produced CO with a small amount of HCO2H.  相似文献   

15.
The reaction between ClCH2-R-CH2Cl, R = p-C6H4, and [Ph3Sn]Li+ yields Ph3Sn-CH2-R-CH2-SnPh3 (1) in high yield. The related known compound R = CH2CH2 (1a) is synthesized by the reaction of the di-Grignard reagent BrMg(CH2)4MgBr with two equivalents of Ph3SnCl. Cleavage of a single Sn-Ph group at each tin centre of both compounds using HCl/Et2O yields the corresponding bis-chlorostannanes Ph2ClSn-CH2-R-CH2-SnClPh2, R = (CH2)4 (2) and R = C6H4 (3), respectively. Compounds 1, 2 and 3 are crystalline solid materials and their single crystal X-ray structures are reported. In the solid state both 2 and 3 form self-assembled ladder structures involving alternating intermolecular Cl-Sn?Cl and Cl?Sn-Cl bonded chains at both ends of the distannanes with 5-coordinate tin atoms. Recrystallization of 3 from CH2Cl2 in the presence of DMF yields the bis-DMF adduct (4) in which no self-assembled structures were noted. Evaluation of the chlorostannanes 2 and 3 against a suite of bacteria, Staphylococcus aureus, Escherichia coli and Photobacterium phosphoreum is reported and compared to the related mono-chlorostannanes Ph2(CH3)SnCl and Ph2(PhCH2)SnCl.  相似文献   

16.
1-(Phenylselenomethyl)-1H-benzotriazole (L1) and 1-(4-methoxyphenyltelluromethyl)-1H-benzotriazole (L2) have been synthesized by reacting 1-(chloromethyl)-1H-benzotriazole with in situ generated nucleophiles PhSe and ArTe, respectively. The complexes of L1 and L2 with Pd(II) and Ru(II)(η6-p-cymene) have been synthesized. Proton, carbon-13, Se-77 and/or Te-125 NMR spectra authenticate both the ligands and their complexes. The single crystal structures of L1, L2 and [RuCl(η6-p-cymene)(L)][PF6] (L = L1: 3, L = L2: 4) have been solved. The Ru-Se and Ru-Te bond lengths have been found 2.4801(11) and 2.6183(10) Å, respectively. The palladium complexes, [PdCl2(L)] (L = L1: 1, L = L2: 2) have been explored for Heck and Suzuki-Miyaura C-C coupling reactions. The TON values are upto 95,000. The Ru-complexes have been found promising for catalytic oxidation of alcohols (TON ∼ 7.8-9.4 × 104). The complexes of telluroether ligands are as efficient catalysts as those of selenoether ones and in fact better for catalytic oxidation.  相似文献   

17.
Thermolysis of Ni(OTf)2 in 2-phenyl-pyridine or 2-tolyl-pyridine afforded the cationic chelate derivatives, [bis(2-aryl-pyridine)Ni{(2-aryl-κC2)pyridine-κN}]OTf (aryl = phenyl, 1a; tolyl, 1b). Addition of KBr to 1a and LiBr to 1b provided the bromides, (2-aryl-pyridine)BrNi{(2-aryl-κC2)pyridine-κN} (aryl = phenyl, 2a; tolyl, 2b). When subjected to KOtBu in Et2O, the bromides generated the entitled bis-cyclometalated compounds, Ni{(2-aryl-κC2)pyridine-κN}2 (aryl = phenyl, 3a; tolyl, 3b). These compounds insert diphenylacetylene into one cyclometalate arm to produce [(2-aryl-κC2)pyridine-κN]Ni[2-(2-(1,2-diphenylethenyl-κC2)aryl)pyridine-κN] (aryl = phenyl, 4a; p-tolyl, 4b). X-ray crystallographic studies were conducted on 1a, 2a, 3a and 4a, and a brief DFT study of 3a confirmed its low spin configuration and rippled geometry.  相似文献   

18.
A series of organotin(IV) complexes with O,O-diethyl phosphoric acid (L1H) and O,O-diisopropyl phosphoric acid (L2H) of the types: [R3Sn · L]n (L = L1, R = Ph 1, R = PhCH22, R = Me 3, R = Bu 4; L = L2, R = Ph 9, R = PhCH210, R = Me 11, R = Bu 12), [R2Cl Sn · L]n (L = L1, R = Me 5, R = Ph 6, R = PhCH27, R = Bu 8; L = L2, R = Me 13, R = Ph 14, R = PhCH215, R = Bu 16), have been synthesized. All complexes were characterized by elemental analysis, TGA, IR and NMR (1H, 13C, 31P and 119Sn) spectroscopy analysis. Among them, complexes 1, 2, 3, 5, 8, 9 and 11 have been characterized by X-ray crystallography diffraction analysis. In the crystalline state, the complexes adopt infinite 1D infinite chain structures which are generated by the bidentate bridging phosphonate ligands and the five-coordinated tin centers.  相似文献   

19.
Carbonylation of the palladium complexes [PdCH3(PP′)Cl] (PP′ = 1a, 1b, 1c, 1d, 1e) and [PdCH3(PP′)(CH3CN)](OTf) was investigated by means of high-pressure NMR with the determination of the half-life times t1/2. The results were rationalized on the basis of the electronic properties of the diphosphines and the nature of the solvento ligand in the first coordination sphere. The crystal structures of the complexes [Pd(1b)Cl2] and [Pd(1b)(H2O)2](OTf)2 are described (1b = 1-(diphenylphosphinomethyl)-2-[bis(3- trifluoromethylphenyl)phosphinomethyl]benzene).  相似文献   

20.
Triorganotin chlorides Me3SnCl and (LNC)Me2SnCl (LNC = 2-[(dimethylamino)methyl]phenyl) reacted with potassium 1′-(diphenylphosphino)-1-ferrocenecarboxylate to give the respective carboxylates, Ph2PfcCO2SnMe3 (1) and Ph2PfcCO2SnMe2(LNC) (2; fc = ferrocene-1,1′-diyl), while the analogous triphenylstannyl derivative 3 resulted by condensation of Ph3SnOH with 1′-(diphenylphosphino)-1-ferrocenecarboxylic acid (Hdpf). Compounds 1 and 2 were smoothly oxidized with hydrogen peroxide or elemental sulfur to afford the corresponding P-chalcogen derivatives (P-oxides 1a and 2a; P-sulfides 1b and 2b). All compounds were characterized by multinuclear NMR, IR and mass spectroscopy, and the solid-state structures of 1, 1a, 2, 2a and 2b were determined by single-crystal X-ray diffraction. In the crystal structures of 1 and 1a, the tin atoms were found with distorted trigonal bipyramidal coordination environments completed by the CO or PO oxygens, respectively, from adjacent molecules, which in turn resulted in the formation of infinite linear assemblies. Tin atoms in 2, 2a, and 2b were found with trigonal bipyramidal surrounding as well, though with the donor substituent LNC assuming one of the axial donor sites. Compounds 2 and 2a crystallized as stoichiometric hydrates (2·1/2H2O, 2a·H2O), in which the water molecules served as hydrogen bond donors for the polar groups (CO and PO) and thus aided the formation of closed H-bonded assemblies; the structure of 2b was essentially molecular.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号