首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis, characterization and reactivity studies of the NHC-stabilized complex IDipp ⋅ GeH2BH2OTf ( 1 ) (IDipp=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) are reported. Nucleophilic substitution of the triflate (OTf) group in 1 by phosphine or arsine donors provides access to the cationic group 13/14/15 chains [IDipp ⋅ GeH2BH2ERR1R2]+ ( 2 E=P; R, R1=H; R2=tBu; 3 E=P; R=H; R1, R2=Ph; 4 a E=P; R, R1, R2=Ph; 4 b E=As; R, R1, R2=Ph). These novel cationic chains were characterized by X-ray crystallography, NMR spectroscopy and mass spectrometry. Moreover, the formation of the parent complexes [IDipp ⋅ GeH2BH2PH3][OTf] ( 5 ) and [IDipp ⋅ GeH3][OTf] ( 6 ) were achieved by reaction of 1 with PH3. Accompanying DFT computations give insight into the stability of the formed chains with respect to their decomposition.  相似文献   

2.
N‐Heterocyclic carbene‐phosphinidene adducts of the type (IDipp)PR [R = Ph ( 5 ), SiMe3 ( 6 ); IDipp = 1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene] were used as ligands for the preparation of rhodium(I) and iridium(I) complexes. Treatment of (IDipp)PPh ( 5 ) with the dimeric complexes [M(μ‐Cl)(COD)]2 (M = Rh, Ir; COD = 1,5‐cyclcooctadiene) afforded the corresponding metal(I) complexes [M(COD)Cl{(IDipp)PPh}] [M = Rh ( 7 ) or Ir ( 8 )] in moderate to good yields. The reaction of (IDipp)PSiMe3 ( 6 ) with [Ir(μ‐Cl)(COD)]2 did not yield trimethylsilyl chloride elimination product, but furnished the 1:1 complex, [Ir(COD)Cl{(IDipp)PSiMe3}] ( 9 ). Additionally, the rhodium‐COD complex 7 was converted into the corresponding rhodium‐carbonyl complex [Rh(CO)2Cl{(IDipp)PPh}] ( 10 ) by reaction with an excess of carbon monoxide gas. All complexes were fully characterized by NMR spectroscopy, microanalyses, and single‐crystal X‐ray diffraction studies.  相似文献   

3.
Chloride abstraction from the complexes [(η6-p-cymene){(IDipp)P}MCl] ( 2 a , M=Ru; 2 b , M=Os) and [(η5-C5Me5){(IDipp)P}IrCl] ( 3 b , IDipp=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) with sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaBArF) in the presence of trimethylphosphine (PMe3), 1,3,4,5-tetramethylimidazolin-2-ylidene (MeIMe) or carbon monoxide (CO) afforded the complexes [(η6-p-cymene){(IDipp)P}M(PMe3)]BArF] ( 4 a , M=Ru; 4 b , M=Os), [(η6-p-cymene){(IDipp)P}Os(MeIMe)]BArF] ( 5 ) and [(η5-C5Me5){(IDipp)P}IrL][BArF] ( 6 , L=PMe3; 7 , L=MeIMe; 8 , L=CO). These cationic N-heterocyclic carbene-phosphinidene complexes feature very similar structural and spectroscopic properties as prototypic nucleophilic arylphosphinidene complexes such as low-field 31P NMR resonances and short metal-phosphorus double bonds. Density functional theory (DFT) calculations reveal that the metal-phosphorus bond can be described in terms of an interaction between a triplet [(IDipp)P]+ cation and a triplet metal complex fragment ligand with highly covalent σ- and π-contributions. Crystals of the C−H activated complex 9 were isolated from solutions containing the PMe3 complex, and its formation can be rationalized by PMe3 dissociation and formation of a putative 16-electron intermediate [(η5-C5Me5)Ir{P(IDipp)}I][BArF], which undergoes C−H activation at one of the Dipp isopropyl groups and addition along the iridium-phosphorus bond to afford an unusual η3-benzyl coordination mode.  相似文献   

4.
The N-heterocyclic carbene-phosphinidene adducts (NHC)PH were reacted with AlMe3 in toluene to afford the monoaluminum complexes [{(IDipp)PH}AlMe3] and [{(IMes)PH}AlMe3] (IDipp=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene, IMes=1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene). In contrast, the dialuminum complex [{(MeIMes)PH}(AlMe3)2] was obtained for MeIMes=1,3-bis(2,4,6-trimethylphenyl)-4,5-dimethylimidazolin-2-ylidene. These complexes served as initiators for the efficient ring-opening polymerization of rac-lactide in toluene at 60 °C. High degrees of isoselectivity were found for the poly(rac-lactide) obtained in the presence of the monoaluminum complexes (Pm up to 0.92, Tm up to 191 °C), whereas almost atactic polymers were produced by the dialuminum complex. Detailed mechanistic studies reveal that the polymerization proceeds via a coordination-insertion mechanism with the carbene-phosphinidene ligands acting as stereodirecting groups.  相似文献   

5.
A series of group 13 complexes of the general type [{(WCA‐IDipp)EX3}Li(solv)] (E=B, Al, Ga, In; X=Cl, Br) that bear an anionic N‐heterocyclic carbene ligand with a weakly coordinating borate moiety (WCA‐IDipp, WCA=B(C6F5)3 and IDipp=1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene) were prepared by the reaction of the respective group 13 trihalides (EX3) with the lithium salt [(WCA‐IDipp)Li ? toluene]. The molecular structures of the BBr3, AlCl3, AlBr3, GaCl3 and InCl3 adducts were established by X‐ray diffraction analyses, revealing the formation of coordination polymers linked by halide‐lithium interactions, except for the indium derivative, which consists of isolated [Li(THF)4]+ and [(WCA‐IDipp)InCl3]? ions in the solid state.  相似文献   

6.
The synthesis and characterization of the first parent phosphanylalane and phosphanylgallane stabilized only by a Lewis base (LB) are reported. The corresponding substituted compounds, such as IDipp?GaH2PCy2 ( 1 ) (IDipp=1,3‐bis(2,6‐diisopropylphenyl)‐imidazolin‐2‐ylidene) were obtained by the reaction of LiPCy2 with IDipp?GaH2Cl. However, the LB‐stabilized parent compounds IDipp?GaH2PH2 ( 3 ) and IDipp?AlH2PH2 ( 4 ) were prepared via a salt metathesis of LiPH2?DME with IDipp?E′H2Cl (E′=Ga, Al) or by H2‐elimination reactions of IDipp?E′H3 (E′=Ga, Al) and PH3, respectively. The compounds could be isolated as crystalline solids and completely characterized. Supporting DFT computations gave insight into the reaction pathways as well as into the stability of these compounds with respect to their decomposition behavior.  相似文献   

7.
The abnormally bound, anionic NHC–borane complex [Ru(IDipp‐BF3)(p‐cymene)Cl]2 ( 4 ; IDipp‐BF3=1,3‐(2,6‐iPr2C6H3)2‐2‐BF3(C3HN2)‐4‐yl) was synthesized by transmetalation from Li[(IDipp‐BF3)2Ag]. Addition of donors gave species of the form [Ru(IDipp‐BF3)(p‐cymene)(L)Cl], whereas halide abstraction with Ag(Et2O)[B(C6F5)4] gave C?H activation of the methine position of the IDipp?BF3 ligand.  相似文献   

8.
Phosphorus mononitride (PN) and arsenic mononitride (AsN) species supported by two different N-heterocyclic carbenes were prepared: The reaction of [(IDipp)NSiMe3] [IDipp = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene] with PCl3 or AsCl3 afforded the dichlorides [(IDipp)NECl2] (E = P, As) and, after the addition of IMes [IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene], the cationic chloro species [(IDipp)NE(Cl)(IMes)]Cl (E = P, As), which were reduced with potassium graphite (KC8) to yield the neutral compounds [(IMes)PN(IDipp)] and [(IMes)AsN(IDipp)], which exhibit the typical trans-bent geometry of dicarbene-dielement species in the solid state according to single-crystal X-ray diffraction.  相似文献   

9.
An experimental and theoretical study of the first compound featuring a Si?P bond to a two‐coordinate silicon atom is reported. The NHC‐stabilized phosphasilenylidene (IDipp)Si?PMes* (IDipp=1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene, Mes*=2,4,6‐tBu3C6H2) was prepared by SiMe3Cl elimination from SiCl2(IDipp) and LiP(Mes*)SiMe3 and characterized by X‐ray crystallography, NMR spectroscopy, cyclic voltammetry, and UV/Vis spectroscopy. It has a planar trans‐bent geometry with a short Si? P distance of 2.1188(7) Å and acute bonding angles at Si (96.90(6)°) and P (95.38(6)°). The bonding parameters indicate the presence of a Si?P bond with a lone electron pair of high s‐character at Si and P, in agreement with natural bond orbital (NBO) analysis. Comparative cyclic voltammetric and UV/Vis spectroscopic experiments of this compound, the disilicon(0) compound (IDipp)Si?Si(IDipp), and the diphosphene Mes*P?PMes* reveal, in combination with quantum chemical calculations, the isolobal relationship of the three double‐bond systems.  相似文献   

10.
Thorium redox chemistry is extremely scarce due to the high stability of ThIV. Here we report two unique examples of thorium arenide complexes prepared by reduction of a ThIV-siloxide complex in presence of naphthalene, the mononuclear arenide complex [K(OSi(OtBu)3)3Th(η6-C10H8)] ( 1 ) and the inverse-sandwich complex [K(OSi(OtBu)3)3Th]2(μ-η66-C10H8)] ( 2 ). The electrons stored in these complexes allow the reduction of a broad range of substrates (N2O, AdN3, CO2, HBBN). Higher reactivity was found for the complex 1 which reacts with the diazoolefin IDipp=CN2 to yield the unexpected ThIV amidoalkynyl complex 5 via a terminal N-heterocyclic vinylidene intermediate. This work showed that arenides can act as convenient redox-active ligands for implementing thorium-ligand cooperative multielectron transfer and that the reactivity can be tuned by the arenide binding mode.  相似文献   

11.
The cyaphide anion, CP, is shown to undergo three distinct oligomerization reactions in the coordination sphere of metals. Reductive coupling of Au(IDipp)(CP) (IDipp=1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) by Sm(Cp*)2(OEt2) (Cp*=1,2,3,4,5-pentamethylcyclopentadienyl), was found to afford a tetra-metallic complex containing a 2,3-diphosphabutadiene-1,1,4,4-tetraide fragment. By contrast, non-reductive dimerization of Ni(SIDipp)(Cp)(CP) (SIDipp=1,3-bis(2,6-diisopropylphenyl)-imidazolidin-2-ylidene; Cp=cyclopentadienyl), gives rise to an asymmetric bimetallic complex containing a 1,3-diphosphacyclobutadiene-2,4-diide moiety. Spontaneous trimerization of Sc(Cp*)2(CP) results in the formation of a trimetallic complex containing a 1,3,5-triphosphabenzene-2,4,6-triide fragment. These transformations show that while cyaphido transition metal complexes can be readily accessed using metathesis reactions, many such species are unstable to further oligomerization processes.  相似文献   

12.
This review deals with the chemistry and coordination behaviour of imino-aza phosphorus(V) ligands focussing on s- and p-block as well as Group 11 and 12 metal complexes. Imino phosphorus(V) ligands contain one or more terminal RNP-units, which include iminophosphoranes R3PNR′, monoanionic diiminophosphinates [R2P(NR′)2], dianionic triiminophosphonates [RP(NR′)3]2− and trianionic tetraiminophosphates [P(NR′)4]3−. Aza-phosphorus(V) ligands feature bridging PNP units, which include cyclic and polymeric phosphazenes [R2PN]n. Imino-aza- phosphorus(V) ligands containing both imino and aza functions include linear diiminodiphosphazenates [N{R2P(NR′)2}2] and multianionic poly(imino) cyclophosphazeantes such as [N4{RP(NR′)}4]4− and [N3{P(NR′)2}3]6−. Imino-aza phosphorus(V) ligands are assembled of three basic building blocks: the cationic tetravalent phosphonium centre (P), the anionic divalent amido function (N) and the terminally arranged R-group. The overall negative charge Z of the resulting ligand system is equal to the difference between the number of P and the number of N-centres: Z=n(P)n(N). Imino-aza phosphorus(V) ligands are electron rich N-donor ligands which co-ordinate via both N(imino) and N(aza) functions and have been applied in numerous metal complexes in order to stabilise low coordination numbers, unusual oxidation states and bonding modes or serve as ligands in homogeneous catalysis. The R-group provides both steric bulk and solubility in non-polar solvents. Multianionic phosphazenates feature a polydentate ligand surface, which facilitates an extremely high metal load. PN units of iminophosphoranes and phosphazenes have acceptor properties and enhance the acidity of α-alkyl and ortho-aryl protons. Deprotonation of P-alkyl and P-aryl iminophosphoranes give ligand systems featuring C,N chelating sites, which are also discussed.  相似文献   

13.
In the present study two new series of Copper(II), Nickel(II) and Cobalt(II) complexes with two newly synthesized Schiff base ligands 4,6-bis(1-(4-bromophenylimino)ethyl)benzene-1,3-diol (H2L1), 4,6-bis(1-(4-methoxyphenylimino) ethyl)benzene-1,3-diol (H2L2) and organic ligands 8-hydroxy quinoline, 1,10-phenanthroline have been prepared. The Schiff bases H2L1 and H2L2 ligands were synthesized by the condensation of 4,6-diacetyl resorcinol with 4-bromo aniline and 4-methoxy aniline. The ligands and their metal complexes have been characterized by FT-IR, Mass, 1H NMR, UV–Vis., elemental analysis, ESR and Thermal gravimetric analysis. The Schiff base and their metal complexes were tested for antimicrobial activity against gram positive bacteria Staphylococcus aureus, Streptococcus pyogenes and gram negative bacteria Escherichia coli, Pseudomonas aeruginosa and fungus Candida albicans, Aspergillus niger and Aspergillus clavatus using Broth Dilution Method.  相似文献   

14.
Three new N2S2 donor ligands 1,1′-((2-(2-(phenylthio)phenylthio)phenyl)methylene)bis(3,5-R-1H-pyrazole), R = H (LH), R = Me (LMe), R = i-Pr (Li-Pr) have been prepared and characterized. These bifunctional ligands incorporate two distinct chelate donor systems, by virtue of the presence of bispyrazole and bisthioether functions. The preferred conformation of these ligands is such that the N2 and S2 donor moieties may be oriented in opposite directions, thus favoring the formation of molecular chains when treated with AgBF4. The X-ray structures of Ag(I) complexes show that, depending on the steric hindrance present on the pyrazole rings, these ligands behave as κ4-SSNN-μ bridging tetradentate (when R = H), or κ3-SNN-μ bridging tridentate (when R = Me, i-Pr). Interestingly, [Ag(LH)]BF4 crystallizes in the chiral space group P41, with the molecular chain that is folded around the 41 screw axis.  相似文献   

15.
The coordination chemistry of a series of bis-bidentate ligands with cadmium(II) ions has been investigated. The ligands, containing two N,S-donor chelating (pyrazolyl/thioether) fragments, have afforded complexes of a variety of structural types (dinuclear M2L2 ‘mesocate’ complexes, a one-dimensional chain coordination polymer and a simple mononuclear complex) according to whether the bis-bidentate ligands act as bridges spanning two metal ions, or a tetradentate chelate to a single metal ion. The p-phenylene and m-biphenyl spaced ligands L1 and L3 form dinuclear M2L2 complexes where the ligands are arranged in a ‘side-by-side’ fashion. In contrast the m-phenylene spaced ligand L2 forms a one-dimensional coordination polymer where the ligands adopt a highly folded conformation. The 1,8-naphthalene spaced ligand L4 adopts a tetradendate chelating mode and affords a simple mononuclear complex.  相似文献   

16.
The two‐coordinate germanium cation [(IDipp){(Me3Si)2CH}Ge:]+ has been synthesized, which lacks π‐donor stabilization of the metal center and consequently has a very small HOMO–LUMO gap (187 kJ mol?1). It undergoes a variety of facile oxidative bond‐forming reactions, most notably allowing access to the first examples of Group 14 metal cations containing M?E multiple bonds (E=C, N). The use of an electrostatic (rather than purely steric) strategy to discourage aggregation means that less bulky systems (for example, containing a primary alkylidene fragment, ?CHR) are accessible.  相似文献   

17.
The syntheses of two new ligands and five new heteroleptic cyclometallated Ir(III) complexes are reported. The ligands are based upon a functionalised anthra[1,2-d]imidazole-6,11-dione core giving LH1−3 incorporating a pendant pyridine, quinoline or thiophene unit respectively. Neutrally charged, octahedral complexes [Ir(ppy)2(L1−3)] are chelated by two cyclometallated phenylpyridine (ppy) ligands and a third, ancillary deprotonated ligand L1−3, whilst cationic analogues could only be isolated for [Ir(ppy)2(LH1−2)][PF6]. X-ray crystal structures for [Ir(ppy)2(L1)], [Ir(ppy)2(LH1)][PF6] and [Ir(ppy)2(L2)] showed the complexes adopt a distorted octahedral coordination geometry, with the anthra[1,2-d]imidazole-6,11-dione ligands coordinating in a bidentate fashion. Preliminary DFT calculations revealed that for the complexes of LH1 and LH2 the LUMO is exclusively localized on the ancillary ligand, whereas the nature of the HOMO depends on the protonation state of the ancillary ligand, often being composed of both Ir(III) and phenylpyridine character. UV-vis. and luminescence data showed that the ligands absorb into the visible region ca. 400 nm and emit ca. 560 nm, both of which are attributed to an intra-ligand CT transition within the anthra[1,2-d]imidazole-6,11-dione core. The complexes display absorption bands attributed to overlapping ligand-centred and 1MLCT-type electronic transitions, whilst only [Ir(ppy)2(L2)] appeared to possess typical 3MLCT behaviour (λem = 616 nm; τ = 96 ns in aerated MeCN). The remaining complexes were generally visibly emissive (λem ≈ 560-570 nm; τ < 10 ns in aerated MeCN) with very oxygen-sensitive lifetimes more indicative of ligand-centred processes.  相似文献   

18.
The tran-bis(ethylenediamine)bis(saccharinato)Zinc(II), [Zn(sac)2(en)2] (ZSED), (en: ethylenediamine and sac: saccharinate) complex has been synthesized and its crystal structure has been determined by X-ray diffraction analysis. The compound crystallizes in space group P21/c. The Zn(II) ion is hexa-coordinated by four nitrogens of two bidentate en ligands composing the basal plane and two nitrogen atoms from the monodentate two sac ligands (N-bonded) occuping the axial sites, adopting an elongated octahedral sphere. Both en and sac ligands occupy the trans positions of the coordination octahedron. The Zn(II) ion in title compound sits on a inversion centre and is octahedrally coordinated two bidentate en (ethylenediamine) and two sac (saccharinate) (N-bonded) ligands. The magnetic environments of Cu2+ doped [Zn(sac)2(en)2] complex have been identified by electron paramagnetic resonance (EPR) technique. Cu2+ doped ZSED single crystals have been studied at room temperature in three mutually perpendicular planes. The calculated results of the Cu2+ doped ZSED indicate that Cu2+ ion contains two magnetically inequivalent Cu2+ sites in distinct orientations occupying substitutional positions in the host lattice and show very high angular dependence.  相似文献   

19.
A series of chain multinuclear cobaltacarboranes of the general formula [(C2B9H11)2Co n (C2B8H10) n?1] n?, wheren = 4 to 7, were synthesized. These compounds, containing derivatives ofortho-carborane(12) as ligands and dicarbollide C2B9H1 2? and bidentate dicarbacanastide C2B8H11 4? ligands, were studied by IR, UV, and H and11B NMR spectroscopy. The nonequivalence of the dicarbacanastide ligands that occupy different positions in the chain with respect to the terminal dicarbollide ligands was discovered.  相似文献   

20.
Mono- and binuclear VO(IV), Ce(III), Th(IV) and UO2(VI) complexes of thiosemicarbazone, semicarbazone and thiocarbohydrazone ligands derived from 4,6-diacetylresorcinol were synthesized. The structures of these complexes were elucidated by elemental analyses, IR, UV–vis, ESR, 1H NMR and mass spectra as well as conductivity and magnetic susceptibility measurements and thermal analyses. The thiosemicarbazone (H4L1) and the semicarbazone (H4L2) ligands behave as dibasic pentadentate ligands in case of VO(IV) and UO2(VI) complexes, tribasic pentadentate in case of Ce(III) complexes and monobasic pentadentate in case of Th(IV) complexes. However, the thiocarbohydrazone ligand (H3L3) acts as a monobasic tridentate ligand in all complexes except the VO(IV) complex in which it acts as a dibasic tridentate ligand. The antibacterial and antifungal activities were also tested against Rhizobium bacteria and Fusarium-Oxysporium fungus. The metal complexes of H4L1 ligand showed a higher antibacterial effect than the free ligand while the other ligands (H4L2 and H3L3) showed a higher effect than their metal complexes. The antifungal effect of all metal complexes is lower than the free ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号