首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
以S,S'-二(α,α '-二甲基-α″-乙酸)三硫代碳酸酯(TRIT)为链转移剂,利用可逆加成断裂链转移自由基聚合(RAFT)制备了窄分布的端羧基大分子链转移剂——聚苯乙烯和聚丙烯腈.以大分子链转移剂为RAFT试剂,引发苯乙烯或丙烯腈单体的RAFT聚合,进一步得到聚丙烯腈-聚苯乙烯-聚丙烯腈(PAN-b-PS-b-PAN)和聚苯乙烯-聚丙烯腈-聚苯乙烯(PS-b-PAN-b-PS)三嵌段共聚物.通过1 H-NMR、FT-IR、凝胶渗透色谱(GPC)对所得产物的结构和分子量进行了袁征,通过原子力显微镜(AFM)和拉曼光谱(Raman)研究了嵌段共聚物薄膜的微相分离结构与热解行为.结果表明:所得产物中除PAN-b-PS-b-PAN外,分子量分布均小于1.2.嵌段共聚物薄膜经250℃热稳定化与600℃热解处理后,碳化并形成了规整的石墨结构,微区尺寸在75 nm左右.  相似文献   

2.
合成了具有两亲性结构的可逆加成断裂链转移(RAFT)试剂,在RAFT试剂的作用下,通过无皂乳液聚合方法合成了丙烯酸六氟丁酯与苯乙烯的共聚物.研究了RAFT试剂浓度和聚合温度对聚合动力学、聚合反应可控性及乳胶粒粒径的影响.通过红外光谱(FTIR)、核磁共振谱(1H NMR)、示差扫描量热仪(DSC)、凝胶渗透色谱仪(GPC)及表面张力仪表征了共聚物的结构、玻璃化转变温度(Tg)、分子量和分子量分布及乳胶膜表面性能.结果表明,得到的苯乙烯和丙烯酸六氟丁酯共聚物无皂乳液的乳胶粒粒径在100 nm左右且呈单分散分布.当RAFT试剂浓度高于0.016 mol/L时聚合体系有较好的可控性.共聚物乳液的乳胶膜对水和二碘甲烷的接触角都很高.  相似文献   

3.
RAFT聚合合成高分子量嵌段聚合物   总被引:1,自引:0,他引:1  
以合成高分子量聚合物为目标,以苯基二硫代乙酸-1-苯基乙酯(PEPDTA)作为RAFT试剂,研究引发剂的种类(偶氮二异丁腈(AIBN)、1-1′-偶氮环己腈(ACC))、用量及聚合温度对苯乙烯/丙烯酸丁酯RAFT共聚合过程和聚合物结构的影响.结果发现,由于体系中RAFT浓度很低,相应的引发剂浓度要比传统自由基聚合低得多,只有采用较高的聚合温度和低分解速率常数的引发剂(ACC),才能制得无活性聚合物分率低(<0.1)、分子量高的聚合物,并进一步得到杂质含量少、分子量分布窄的嵌段聚合物.  相似文献   

4.
将γ-(甲基丙烯酰氧)丙基三甲氧基硅烷(MPS)接枝到凹凸棒土(AT)表面,制得表面带有可聚合碳碳双键的改性粒子AT-MPS;以二硫代苯甲酸氰基异丙酯(CPDB)为链转移剂,采用可逆加成断裂链转移(RAFT)聚合技术,在AT表面进行甲基丙烯酸甲酯(MMA)接枝聚合.通过红外(FTIR)、热失重(TGA)等方法进行了表征,考察了引发剂以及RAFT链转移剂用量对聚合反应动力学和AT表面接枝聚合接枝率的影响.结果表明,PMMA通过RAFT聚合成功接枝在AT表面;基于RAFT过程的接枝聚合比传统自由基接枝聚合具有更长的反应时间和较高的接枝率.本体系相对适宜条件:温度为70℃,[MMA]/[CPDB]/[AIBN]为400/1/0.5.此条件下聚合反应具有很好的可控性,溶液中的聚合物分子量分布指数为1.2~1.3,AT表面PMMA接枝率为16.33%.引发剂和RAFT链转移剂用量过大均会造成接枝率降低.  相似文献   

5.
采用活性阴离子聚合方法,以仲丁基锂为引发剂,以苯乙烯、六甲基环三硅氧烷(D3)和2,4,6-三乙烯基-2,4,6-三甲基环三硅氧烷(V3)为反应单体,分步聚合制备了聚苯乙烯-b-聚(二甲基硅氧烷-stat-乙烯基甲基硅氧烷)[PS-b-P(DMS-stat-VMS)]嵌段聚合物.采用傅里叶变换红外光谱、氢核磁共振谱及凝胶渗透色谱对共聚物的化学结构、分子量及分子量分布进行了表征,并通过扫描电子显微镜、原子力显微镜及接触角等测试方法研究了共聚物各链段组分对共聚物形貌及表面亲疏水/油性的影响.结果表明,所制备的共聚物分子量分布较窄,由于各组分性能的差异而呈现出微相分离结构,同时该共聚物保留了PS-b-PDMS原有的表面性质,为设计结构多样性及性能优异的聚硅氧烷共聚物提供了新思路.  相似文献   

6.
可逆加成-断裂链转移聚合(RAFT Polymerization)是目前最为常用的活性可控自由基聚合方法之一,因其产物分子量分布较窄、适用单体范围广、反应条件温和等优势得到了不同领域科学家的广泛应用。然而,科学家们在选择RAFT链转移剂(也称RAFT试剂)时,经常会忽略RAFT链转移剂与单体活性的匹配原则,导致在制备高活单体与低活单体的嵌段共聚物方面存在产物分子量分布宽、聚合速率慢,甚至反应无法成功进行的问题。基于此,本文首先综述聚合中RAFT链转移剂的选用原则,随后介绍近几年开发的一类同时适用于高/低活性单体聚合的通用型RAFT链转移剂(Universal/Switchable RAFT agent)的作用原理及适用条件,并着重探讨了基于通用型RAFT链转移剂制备高/低活性单体的嵌段共聚物的最新进展及应用。  相似文献   

7.
基于RAFT过程的MMA可控自由基聚合及嵌段共聚物的合成   总被引:1,自引:1,他引:0  
用二硫代酯调控的可逆加成-裂解链转移过程(RAFT)研究了MMA的聚合动力学及分子量分布,分析了引发剂浓度和二硫代酯浓度对反应速度及可控性的影响.用RAFT方法合成了嵌段共聚物PMMA-b-PS及带有自旋标记的嵌段共聚物PMMA-b-PS.  相似文献   

8.
以苯乙烯(St)为单体,二硫代萘甲酸异丁腈酯(CPDN)为可逆-加成断裂链转移聚合(RAFT)试剂,合成大分子链转移剂,再加入不同质量的乙烯基三甲氧基硅烷(A171),得到嵌段比不同的共聚物P(St-b-A171)。通过核磁共振谱仪1 H-NMR、凝胶渗透色谱GPC、动态力学分析仪DMA和接触角等方法对P(St-b-A171)结构进行了表征。结果表明:随着nSt/nA171嵌段比从1∶0.15增加到1∶0.45,P(St-b-A71)数均分子量从10400增加到14000,PDI指数从1.42增加到1.58;聚合物成膜后接触角由78.4°增加到89.6°。通过以上分析得出结论,RAFT合成嵌段共聚物的嵌段比对P(St-b-A171)性能有较大影响。  相似文献   

9.
以甲基丙烯酸二甲氨基乙酯(DMAEMA)为单体、二硫代苯甲酸异丙苯酯(CDB)为链转移剂、偶氮二异丁腈(AIBN)为引发剂,利用RAFT聚合法合成了聚甲基丙烯酸二甲氨基乙酯(PDMAEMA)。以所得PDMAEMA为大分子链转移剂,丙烯酰胺基偶氮苯(AAAB)为单体,AIBN为引发剂,采用RAFT聚合法合成了PDMAEMA-b-PAAAB共聚物,并考察了AAAB的RAFT聚合反应动力学,利用FT-IR、1 H-NMR、GPC和TG对聚合物的结构和热性能进行了表征。结果表明,PDMAEMA的分子量随聚合反应时间的增加而增加,且分子量分布较窄;PDMAEMA-b-PAAAB嵌段共聚物的分子量随着AAAB单体转化率的升高而线性增加,且分子量分布较窄(PDI1.3),聚合反应动力学曲线呈良好的线性关系,且具有较好的热稳定性。  相似文献   

10.
RAFT分散聚合是在分散体系中实施RAFT聚合的一种非均相聚合方法。RAFT分散聚合的最大特点是它可以直接制备聚合物分子量可控、分子量分布窄的聚合物粒子。本文简要介绍了在小分子RAFT试剂和大分子RAFT试剂(Macro-RAFT)存在下,RAFT分散聚合的聚合动力学、聚合物的成核和粒子的增长。小分子RAFT试剂存在下的RAFT分散聚合是一个与普通的分散聚合类似,可以看作为非均相条件下的RAFT聚合,它可以制备微米尺度的聚合物粒子。Macro-RAFT存在下的RAFT分散聚合,是制备高浓度、纳米尺度的嵌段共聚物胶体的重要方法,它包含嵌段共聚物胶束化之前的均相聚合和嵌段共聚物胶束化后的非均相聚合两个阶段。  相似文献   

11.
分别用水溶性的过硫酸钾(KPS)和油溶性的2,2′-偶氮二异丁腈(AIBN)为引发剂引发γ-甲基丙烯酰氧基丙基三甲氧基硅烷(MPS)/苯乙烯(St)细乳液共聚合反应.比较了两类引发剂对MPS/St共聚合动力学(包括硅氧烷水解动力学和MPS/St的自由基共聚合动力学)、乳胶粒稳定性和共聚产物微结构的影响.  相似文献   

12.
研究了二硫代苯甲酸酯存在下偶氮二异丁腈引发苯乙烯(St)、St与N-对羟基苯基马来酰亚胺(HPM)、St与N-对(2-氯/溴丙酰氧基)苯基马来酰亚胺(CPPM/BPPM)的可逆加成-断裂链转移(RAFT)均/共聚,聚合物的结构由紫外-可见光(UV-Vis)与凝胶渗透色谱(GPC)表征.结果表明,St的RAFT均聚以及St与N-取代马来酰亚胺的RAFT共聚均呈现活性聚合特征,分子量随着转化率上升而增加,且分子量分布较窄.对于St的RAFT均聚,由于双基终止,聚苯乙烯(PSt)链中"戴帽效率"随着转化率上升逐渐下降.对于St与N-取代马来酰亚胺的RAFT共聚合,电荷转移复合物的形成显著地提高了共聚反应速度,并促进交替结构的形成.随后进行了以P(St-alt-BPPM)引发St的原子转移自由基聚合以制备梳型PSt,结果表明在强极性溶剂中进行的聚合过程失去可控性,所得产物分子量极宽,而在本体聚合中所得聚合物分子量相对较窄,有一定的可控性.  相似文献   

13.
Homo‐ and copolymers of di(ethylene glycol) methyl ether methacrylate (DEGMA) and oligo(ethyleneglycol) methyl ether methacrylate (OEGMA1100) were synthesized with various chain lengths via reversible addition fragmentation chain transfer (RAFT) polymerization in ethanol using [M]/[RAFT] ratios of 100 and 200. Kinetic investigations on the homo‐ and copolymerization of these monomers were performed using a parallel synthesizer resulting in well‐defined polymers with polydispersity indices mostly below 1.3. The polymerization kinetics are presented and discussed in detail surprisingly revealing that the DEGMA homopolymerization is slower than the OEGMA1100 homopolymerization. Transfer coefficients c were estimated to be ~0.5 for the RAFT polymerization of both DEGMA and OEGMA1100 resulting in hybrid behavior at the beginning of the polymerizations. Subsequent copolymerization also revealed fast incorporation of the OEGMA1100 and relatively slow incorporation of DEGMA resulting in well‐defined copolymers with a molecular weight up to 100 kDa and polydispersities around 1.20. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2811–2820, 2009  相似文献   

14.
Poly(p‐nitrophenyl acrylate)s (PNPAs) with different molecular mass and narrow polydispersity were successfully synthesized for the first time by reversible addition–fragmentation transfer (RAFT) polymerization with azobisisobutyronitrile (AIBN) as an initiator and [1‐(ethoxy carbonyl) prop‐1‐yl dithiobenzoate] as the chain‐transfer agent. Although the molecular mass of PNPAs can be controlled by the molar ratio of NPA to RAFT agent and the conversion, a trace of homo‐PNPA was found, especially at the early stage of polymerization. The dithiobenzoyl‐terminated PNPA obtained was used as a macro chain‐transfer agent in the successive RAFT block copolymerization of styrene (St) with AIBN as the initiator. After purification by two washings with cyclohexane and nitromethane to remove homo‐PSt and homo‐PNPA, the pure diblock copolymers, PNPA‐b‐PSt's, with narrow molecular weight distribution were obtained. The structural analysis of polymerization products by 1H NMR and GPC verified the formation of diblock copolymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4862–4872, 2004  相似文献   

15.
以丙烯酰胺基偶氮苯(AAAB)为单体,二硫代苯甲酸异丙苯酯(CDB)为链转移剂,偶氮二异丁腈(AIBN)为引发剂,N,N-二甲基甲酰胺(DMF)为溶剂,利用可逆加成-断裂链转移(RAFT)聚合法合成了侧链含有偶氮苯基团的聚丙烯酰胺基偶氮苯(PAAAB),同时考察了反应温度、引发剂浓度、链转移剂浓度等因素对聚合反应的影响。利用FT-IR、1H NMR、GPC等对其结构进行了表征。结果表明,聚合反应动力学曲线呈良好的线性关系,分子量分布窄;随着[CDB]/[AIBN]比例的增大,聚合速率、分子量和分子量分布均下降。  相似文献   

16.
采用Z基团为—CH2C6H5的RAFT试剂为链转移剂,AIBN为引发剂,60℃下进行甲基丙烯酸甲酯/丙烯酸丁酯(MMA/BA)的本体RAFT共聚合,并用GPC法测算不同单体组成下低聚物RAFT的链转移常数(Ctr).实验表明,对BA的均聚合,Ctr高达116,但对MMA的均聚合,Ctr约为0.1.在共聚体系中,Ctr与fMMA之间为非线性关系,随着fMMA的增加呈下降趋势.Ctr随单体组成的变化规律可以很好地解释不同单体组成下RAFT共聚合中分子量及其分布随转化率变化的规律.  相似文献   

17.
The kinetics of the RAFT polymerization of p‐acetoxystyrene using a trithiocarbonate chain transfer agent, S‐1‐dodecyl‐S′‐(α,α′‐dimethyl‐α″‐acetic acid)trithiocarbonate, DDMAT, was investigated. Parameters including temperature, percentage initiator, concentration, monomer‐to‐chain transfer agent ratio, and solvent were varied and their impact on the rate of polymerization and quality of the final polymer examined. Linear kinetic plots, linear increase of Mn with monomer conversion, and low final molecular weight dispersities were used as criteria for the selection of optimized polymerization conditions, which included a temperature of 70 or 80 °C with 10 mol % AIBN initiator in bulk for low conversions or in 1,4‐dioxane at a monomer‐to‐solvent volume ratio of 1:1 for higher conversions This study opens the way for the use of DDMAT as a chain transfer agent for RAFT polymerization to incorporate p‐acetoxystyrene together with other functional monomers into well‐defined copolymers, block copolymers, and nanostructures. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2517–2524, 2010  相似文献   

18.
A reversible addition–fragmentation chain transfer (RAFT) agent, 2‐cyanoprop‐2‐yl 1‐dithionaphthalate (CPDN), was synthesized and applied to the RAFT polymerization of glycidyl methacrylate (GMA). The polymerization was conducted both in bulk and in a solvent with 2,2′‐azobisisobutyronitrile (AIBN) as the initiator at various temperatures. The results for both types of polymerizations showed that GMA could be polymerized in a controlled way by RAFT polymerization with CPDN as a RAFT agent; the polymerization rate was first‐order with respect to the monomer concentration, and the molecular weight increased linearly with the monomer conversion up to 96.7% at 60 °C, up to 98.9% at 80 °C in bulk, and up to 64.3% at 60 °C in a benzene solution. The polymerization rate of GMA in bulk was obviously faster than that in a benzene solution. The molecular weights obtained from gel permeation chromatography were close to the theoretical values, and the polydispersities of the polymer were relatively low up to high conversions in all cases. It was confirmed by a chain‐extension reaction that the AIBN‐initiated polymerizations of GMA with CPDN as a RAFT agent were well controlled and were consistent with the RAFT mechanism. The epoxy group remained intact in the polymers after the RAFT polymerization of GMA, as indicated by the 1H NMR spectrum. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2558–2565, 2004  相似文献   

19.
Random and reversible addition-fragmentation chain transfer (RAFT) copolymerizations of methacrylic acid (MAA)/acrylamide (AAm), MAA/styrene (St), and MAA/4-vinyl pyridine (4VP) were carried out in ethanol. (CPDB)-terminated PMAA (PMAA-CPDB) and 2,2′-azobis(2,4-diemthylvaleronitrile) (V-65) was used as the macromolecular chain transfer agent (CTA) and initiator, respectively. Electric conductivity of copolymerization systems was traced throughout the polymerizations, and charges of soluble copolymer and particles were detected. As a result, a considerable increase of conductivity was observed in all of the RAFT polymerization systems, whereas the variation of conductivity in the random copolymerization systems was insignificant. The high conductivity of RAFT polymerization was dominantly contributed by the soluble diblock copolymers in the serum, rather than their particles, except for P(MAA-b-4VP) where only the particles was obtained due to the zwitterionic interactions of PMAA segments and 4VP. In the direct current (DC) field, the behavior of these soluble diblock copolymers, P(MAA-b-AAM) and P(MAA-b-St), indicated that they were positively charged, whereas the particles of (PMAA-b-AAm) and P(MAA-b-4VP) were surprisingly negatively charged, though the composition of MAA was dominant. Soluble random copolymers of P(MAA-co-St) and P(MAA-co-4VP) represented the charge neutrality. These results indicated that the positive charges were contributed by the solvophobic block in the soluble diblock copolymers. Therefore, the diblock copolymers were the macrodipoles boosting the conductivity of solution. Meanwhile, it indicated that the electrostatic interactions of dipoles were possibly the main driving force of their self-assembly. Generally, compared with RAFT polymerization, the particles were hard to be prepared in the random copolymerization. It implies that the electrostatic interactions of diblock copolymers also played an important role in the particle formation.
Figure
In ethanol, the soluble diblock copolymers of P(MAA-co-X) (X?=?AAm, St) and particles of P(MAA-co-4VP) were positively charged, though the component of MAA was dominant. The particles of P(MAA/AAm) were negatively charged and particles of P(MAA-co-St) were charge neutrality. The soluble random copolymers generally were charge neutrality. It was relatively difficult to prepare particles by random copolymerization. These results indicated that the electrostatic interactions played an important role on the self-assembly and particle formation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号