首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The population lifetimes of the bend fundamental of dilute water in liquid chloroform (8.5 ps) and d-chloroform (28.5 ps) display an interesting solvent isotope effect. As the lowest excited vibrational state of the molecule, the water bend fundamental relaxes directly to the ground state with about 1600 cm-1 of energy released to the other degrees of freedom. The strong solvent isotope effect along with the large energy gap indicates the participation of solvent vibrational modes in this vibrational energy relaxation process. We calculate the vibrational energy relaxation rates of the water bend in chloroform and d-chloroform using the Landau-Teller formula with a new potential model developed and parametrized self-consistently to describe the chloroform-water interaction. The computed values are in reasonable agreement with the experimental results, and the trend for the isotope effect is correct. It is found that energy transfer to the solvent vibrations does indeed play an important role. Nevertheless, no single dominant solvent accepting mode can be identified; the relaxation appears to involve both the bend and the C-Cl stretches, and frequency changes of all of these modes upon deuteration contribute to the observed solvent isotope effect.  相似文献   

2.
Studies of vibrational energy flow in various polar and nonpolar molecules that follows the ultrafast excitation of the CH and OH stretch fundamentals, modeled using semiclassical methods, are reviewed. Relaxation rates are calculated using Landau-Teller theory and a time-dependent method, both of which consider a quantum mechanical solute molecule coupled to a classical bath of solvent molecules. A wide range of decay rates are observed, ranging from 1 ps for neat methanol to 50 ps for neat bromoform. In order to understand the flow rates, it is argued that an understanding of the subtle mixing between the solute eigenstates is needed and that solute anharmonicities are critical to facilitating condensed phase vibrational relaxation. The solvent-assisted shifts of the solute vibrational energy levels are seen to play a critical role of enhancing or decreasing lifetimes.  相似文献   

3.
Molecular dynamics simulations are used in conjunction with Landau-Teller, fluctuating Landau-Teller, and time-dependent perturbation theories to investigate energy flow out of various vibrational states of liquid CHBr3 and CDBr3. The CH stretch overtone is found to relax with a time scale of about 1 ps compared to the 50 ps rate for the fundamental. The relaxation pathways and rates for the CD stretch decay in CDBr3 are computed in order to understand the changes arising from deuteration. While the computed relaxation rate agrees well with experiments, the pathway is found to be more complex than anticipated. In addition to the above channels for CH(D) stretch relaxation that involve only the hindered translations and rotations of the solvent, routes involving off-resonant and resonant excitations of solvent vibrational modes are also examined. Finally, the decay of energy from low frequency states to near-lying solute states and solvent vibrations are studied.  相似文献   

4.
The vibrational energy relaxation from the first excited ND-stretching mode of NH(2)D dissolved in liquid NH(3) is studied using molecular dynamics simulations. The rate constants for inter- and intramolecular energy transfer are calculated in the framework of the quantum-classical Landau-Teller theory. At 273 K and an ammonia density of 0.642 g cm(-3) the calculated ND-stretch lifetime of τ = 9.1 ps is in good agreement with the experimental value of 8.6 ps. The main relaxation channel accounting for 52% of the energy transfer involves an intramolecular transition to the first excited state of the umbrella mode. The energy difference between both states is taken up by the near-resonant bending vibrations of the solvent. Less important for the ND-stretch lifetime are both the direct transition to the ground state and intramolecular relaxation via the NH(2)D bending modes contributing 23% each. Our calculations imply that the experimentally observed weak density dependence of τ is caused by detuning the resonance between the ND-stretch-umbrella energy gap and the solvent accepting modes which counteracts the expected linear increase of the relaxation rate with density.  相似文献   

5.
Transient electronic absorption measurements reveal the vibrational relaxation dynamics of CH(3)I following excitation of the C-H stretch overtone in the gas phase and in liquid solutions. The isolated molecule relaxes through two stages of intramolecular vibrational relaxation (IVR), a fast component that occurs in a few picoseconds and a slow component that takes place in about 400 ps. In contrast, a single 5-7 ps component of IVR precedes intermolecular energy transfer (IET) to the solvent, which dissipates energy from the molecule in 50 ps, 44 ps, and 16 ps for 1 M solutions of CH(3)I in CCl(4), CDCl(3), and (CD(3))(2)CO, respectively. The vibrational state structure suggests a model for the relaxation dynamics in which a fast component of IVR populates the states that are most strongly coupled to the initially excited C-H stretch overtone, regardless of the environment, and the remaining, weakly coupled states result in a secondary relaxation only in the absence of IET.  相似文献   

6.
7.
8.
In continuation of our work on haloforms, the decay of CH stretch excitation in bromoform is modeled using molecular dynamics simulations. An intermolecular force field is obtained by fitting ab initio energies at select CHBr3 dimer geometries to a potential function. The solvent forces on vibrational modes obtained in the simulation are used to compute relaxation rates. The Landau-Teller approach points to a single acceptor state in the initial step of CH stretch relaxation. The time scale for this process is found to be 50-90 ps, which agrees well with the experimental value of 50 ps. The reason for the selectivity of the acceptor is elaborated. Results from a time-dependent approach to the decay rates are also discussed.  相似文献   

9.
We studied the vibrational energy relaxation mechanisms of the amide I and amide II modes of N-methylacetamide (NMA) monomers dissolved in bromoform using polarization-resolved femtosecond two-color vibrational spectroscopy. The results show that the excited amide I vibration transfers its excitation energy to the amide II vibration with a time constant of 8.3 ± 1 ps. In addition to this energy exchange process, we observe that the excited amide I and amide II vibrations both relax to a final thermal state. For the amide I mode this latter process dominates the vibrational relaxation of this mode. We find that the vibrational relaxation of the amide I mode depends on frequency which can be well explained from the presence of two subbands with different vibrational lifetimes (~1.1 ps on the low frequency side and ~2.7 ps on the high frequency side) in the amide I absorption spectrum.  相似文献   

10.
Ultrafast transient absorption spectra in the deep to near UV range (212-384 nm) were measured for the [Cu(II)(MeOH)(5)Cl](+) complexes in methanol following 255-nm excitation of the complex into the ligand-to-metal charge-transfer excited state. The electronically excited complex undergoes sub-200 fs radiationless decay, predominantly via back electron transfer, to the hot electronic ground state followed by fast vibrational relaxation on a 0.4-4 ps time scale. A minor photochemical channel is Cu-Cl bond dissociation, leading to the reduction of copper(II) to copper(I) and the formation of MeOH·Cl charge-transfer complexes. The depletion of ground-state [Cu(II)(MeOH)(5)Cl](+) perturbs the equilibrium between several forms of copper(II) complexes present in solution. Complete re-equilibration between [Cu(II)(MeOH)(5)Cl](+) and [Cu(II)(MeOH)(4)Cl(2)] is established on a 10-500 ps time scale, slower than methanol diffusion, suggesting that the involved ligand exchange mechanism is dissociative.  相似文献   

11.
State-to-state vibrational energy relaxation (VER) rates of the OH-stretch fundamental to select vibrational modes of liquid methanol are presented. The rates are calculated via a modified, fluctuating Landau-Teller (FLT) theory approach, which allow for dynamical vibrational energy level shifts. These rates are then compared to previously published results from Gulmen and Sibert [J. Phys. Chem. A 2004, 108, 2389] for the traditional Landau-Teller (LT) method as well as results calculated through time-dependent perturbation theory (TD), which naturally allow for the fluctuation. For the first time, this method is applied to a polyatomic molecular system, and the FLT theory greatly reduces the discrepancy between the LT and TD results or, at a minimum, is comparable to the LT approach with very little additional computational cost.  相似文献   

12.
Nonequilibrium molecular dynamics (MD) simulations and instantaneous normal mode (INMs) analyses are used to study the vibrational relaxation of the C-H stretching modes (ν(s)(CH?)) of deuterated N-methylacetamide (NMAD) in aqueous (D2O) solution. The INMs are identified unequivocally in terms of the equilibrium normal modes (ENMs), or groups of them, using a restricted version of the recently proposed Min-Cost assignment method. After excitation of the parent ν(s)(CH?) modes with one vibrational quantum, the vibrational energy is shown to dissipate through both intramolecular vibrational redistribution (IVR) and intermolecular vibrational energy transfer (VET). The decay of the vibrational energy of the ν(s)(CH?) modes is well fitted to a triple exponential function, with each characterizing a well-defined stage of the entire relaxation process. The first, and major, relaxation stage corresponds to a coherent ultrashort (τ(rel) = 0.07 ps) energy transfer from the parent ν(s)(CH?) modes to the methyl bending modes δ(CH?), so that the initially excited state rapidly evolves into a mixed stretch-bend state. In the second stage, characterized by a time of 0.92 ps, the vibrational energy flows through IVR to a number of mid-range-energy vibrations of the solute. In the third stage, the vibrational energy accumulated in the excited modes dissipates into the bath through an indirect VET process mediated by lower-energy modes, on a time scale of 10.6 ps. All the specific relaxation channels participating in the whole relaxation process are properly identified. The results from the simulations are finally compared with the recent experimental measurements of the ν(s)(CH?) vibrational energy relaxation in NMAD/D?O(l) reported by Dlott et al. (J. Phys. Chem. A 2009, 113, 75.) using ultrafast infrared-Raman spectroscopy.  相似文献   

13.
We report the vibrational and orientational dynamics of water molecules in isotopically diluted NaOH and NaOD solutions using polarization-resolved femtosecond vibrational spectroscopy and terahertz time-domain dielectric relaxation measurements. We observe a speed-up of the vibrational relaxation of the O-D stretching vibration of HDO molecules outside the first hydration shell of OH(-) from 1.7 ± 0.2 ps for neat water to 1.0 ± 0.2 ps for a solution of 5 M NaOH in HDO:H(2)O. For the O-H vibration of HDO molecules outside the first hydration shell of OD(-), we observe a similar speed-up from 750 ± 50 fs to 600 ± 50 fs for a solution of 6 M NaOD in HDO:D(2)O. The acceleration of the decay is assigned to fluctuations in the energy levels of the HDO molecules due to charge transfer events and charge fluctuations. The reorientation dynamics of water molecules outside the first hydration shell are observed to show the same time constant of 2.5 ± 0.2 ps as in bulk liquid water, indicating that there is no long range effect of the hydroxide ion on the hydrogen-bond structure of liquid water. The terahertz dielectric relaxation experiments show that the transfer of the hydroxide ion through liquid water involves the simultaneous motion of ~7 surrounding water molecules, considerably less than previously reported for the proton.  相似文献   

14.
An intriguing energy-transfer experiment was recently carried out in methanol/carbon tetrachloride solutions. It turned out to be possible to watch vibrational energy accumulating in three of carbon tetrachloride's modes following initial excitation of O-H and C-H stretches in methanol, in effect making those CCl(4) modes "molecular thermometers" reporting on methanol's relaxation. In this paper, we use the example of a CCl(4) molecule dissolved in liquid argon to examine, on a microscopic level, just how this kind of thermal activation occurs in liquid solutions. The fact that even the lowest CCl(4) mode has a relatively high frequency compared to the intermolecular vibrational band of the solvent means that the only solute-solvent dynamics relevant to the vibrational energy transfer will be extraordinarily local, so much so that it is only the force between the instantaneously most prominent Cl and solvent atoms that will significantly contribute to the vibrational friction. We use this observation, within the context of a classical instantaneous-pair Landau-Teller calculation, to show that energy flows into CCl(4) primarily via one component of the nominally degenerate, lowest frequency, E mode and does so fast enough to make CCl(4) an excellent choice for monitoring methanol relaxation. Remarkably, within this theory, the different symmetries and appearances of the different CCl(4) modes have little bearing on how well they take up energy from their surroundings--it is only how high their vibrational frequencies are relative to the solvent intermolecular vibrational band edge that substantially favors one mode over another.  相似文献   

15.
本文测定了纯CH3OD, DMSO-d6中^2D和DMF中^1^4N的弛豫时间. 参照文献所列核四极矩偶合常数, 按公式计算它们的液体分子取向相关时间, 参照Hertz等的假设, 认为在混合溶剂中各组分的核四极矩偶合常数基本不变, 与纯质相同, 并计算了各组分分子在各个混合溶剂中的取向相关时间, 从而初步讨论了混合溶剂中各组分分子间的相互作用.  相似文献   

16.
A modified Landau-Teller equation for vibrational relaxation in the condensed phase is proposed. This equation differs from previous approaches by accounting for the fluctuations of the energies of the vibrational levels that result from the interactions with the surroundings (bath). In the conventional approach the effects of the bath are only included in the coupling between the relaxing and accepting vibrational modes. It is shown that the additional inclusion of the fluctuations of the energy levels can lead to a dramatic change of the vibrational relaxation rate.  相似文献   

17.
The excited-state dynamics of protochlorophyllide a, a porphyrin-like compound and, as substrate of the NADPH/protochlorophyllide oxidoreductase, a precursor of chlorophyll biosynthesis, is studied by femtosecond absorption spectroscopy in a variety of solvents, which were chosen to mimic different environmental conditions in the oxidoreductase complex. In the polar solvents methanol and acetonitrile, the excited-state dynamics differs significantly from that in the nonpolar solvent cyclohexane. In methanol and acetonitrile, the relaxation dynamics is multiexponential with three distinguishable time scales of 4.0-4.5 ps for vibrational relaxation and vibrational energy redistribution of the initially excited S1 state, 22-27 ps for the formation of an intermediate state, most likely with a charge transfer character, and 200 ps for the decay of this intermediate state back to the ground state. In the nonpolar solvent cyclohexane, only the 4.5 ps relaxational process can be observed, whereas the intermediate intramolecular charge transfer state is not populated any longer. In addition to polarity, solvent viscosity also affects the excited-state processes. Upon increasing the viscosity by adding up to 60% glycerol to a methanolic solution, a deceleration of the 4 and 22 ps decay rates from the values in pure methanol is found. Apparently not only vibrational cooling of the S1 excited state is slowed in the more viscous surrounding, but the formation rate of the intramolecular charge transfer state is also reduced, suggesting that nuclear motions along a reaction coordinate are involved in the charge transfer. The results of the present study further specify the model of the excited-state dynamics in protochlorophyllide a as recently suggested (Chem. Phys. Lett. 2004, 397, 110).  相似文献   

18.
The relaxation of vibrational energy in the H and D stretch modes has been studied on the graphene surface using ab initio calculations. The dissipation of the vibrational energy stored in the stretching modes proceeds through vibration-phonon coupling, while the dissipation through electronic excitations makes only minor contributions. Recently, we reported the fast relaxation of the H stretch energy on graphene [S. Sakong and P. Kratzer, J. Chem. Phys. 133, 054505 (2010)]. Interestingly, we predict the lifetime of the D stretch to be markedly longer compared to the relaxation of the H stretch. This is unexpected since the vibrational amplitudes at carbon atoms in the joint C-D vibrational modes are larger than in the joint C-H modes, due to the mass ratio m(D)/m(C) > m(H)/m(C). However, the vibrational relaxation rate for the D stretch is smaller than for the H stretch, because the energy is dissipated to an acoustic phonon of graphene in the case of C-D rather than an optical phonon as is the case in C-H, and hence, the corresponding phonon density of states is lower in the C-D case. To rationalize our findings, we propose a general scheme for estimating vibrational lifetimes of adsorbates based on four factors: the density of states of the phonons that mediates the transitions, the vibration-phonon coupling strength, the anharmonic coupling between local modes, and the number of quanta involved in the transitions. Mainly the first two of these factors are responsible for the differences in the lifetimes of the C-H and C-D stretches. The possible role of the other factors is illustrated in the context of vibrational lifetimes in other recently studied systems.  相似文献   

19.
The photodissociation dynamics of the 3s Rydberg state of three ketones (CH3CO–R, R=C2H5, C3H7, and iso-C4H9) and the ensuing dissociation of the nascent acetyl radical following 195 nm excitation were investigated by ultrafast photoionization spectroscopy. The 3s state the lifetimes of these ketones are similar (2.5–2.9 ps), though lifetimes of the acetyl radical range from 8.6 ps for CH3CO–C2H5, 15 ps for CH3CO–C3H7, to 23 ps for CH3CO–(iso-C4H9), which suggests that for larger R more vibrational degrees of freedom compete for the excess energy so that less energy is partitioned into the internal energy of the acetyl radical.  相似文献   

20.
The temporally overlapping, ultrafast electronic and vibrational dynamics of a model five-coordinate, high-spin heme in a nominally isotropic solvent environment has been studied for the first time with three complementary ultrafast techniques: transient absorption, time-resolved resonance Raman Stokes, and time-resolved resonance Raman anti-Stokes spectroscopies. Vibrational dynamics associated with an evolving ground-state species dominate the observations. Excitation into the blue side of the Soret band led to very rapid S2 --> S1 decay (sub-100 fs), followed by somewhat slower (800 fs) S1 --> S0 nonradiative decay. The initial vibrationally excited, non-Boltzmann S0 state was modeled as shifted to lower energy by 300 cm(-1) and broadened by 20%. On a approximately 10 ps time scale, the S0 state evolved into its room-temperature, thermal distribution S0 profile largely through VER. Anti-Stokes signals disappear very rapidly, indicating that the vibrational energy redistributes internally in about 1-3 ps from the initial accepting modes associated with S1 --> S0 internal conversion to the rest of the macrocycle. Comparisons of anti-Stokes mode intensities and lifetimes from TRARRS studies in which the initial excited state was prepared by ligand photolysis [Mizutani, T.; Kitagawa, T. Science 1997, 278, 443, and Chem. Rec. 2001, 1, 258] suggest that, while transient absorption studies appear to be relatively insensitive to initial preparation of the electronic excited state, the subsequent vibrational dynamics are not. Direct, time-resolved evaluation of vibrational lifetimes provides insight into fast internal conversion in hemes and the pathways of subsequent vibrational energy flow in the ground state. The overall similarity of the model heme electronic dynamics to those of biological systems may be a sign that the protein's influence upon the dynamics of the heme active site is rather subtle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号