首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the 21st century, soft materials will become more important as functional materials because of their dynamic nature. Although soft materials are not as highly durable as hard materials, such as metals, ceramics, and engineering plastics, they can respond well to stimuli and the environment. The introduction of order into soft materials induces new dynamic functions. Liquid crystals are ordered soft materials consisting of self‐organized molecules and can potentially be used as new functional materials for electron, ion, or molecular transporting, sensory, catalytic, optical, and bio‐active materials. For this functionalization, unconventional materials design is required. Herein, we describe new approaches to the functionalization of liquid crystals and show how the design of liquid crystals formed by supramolecular assembly and nano‐segregation leads to the formation of a variety of new self‐organized functional materials.  相似文献   

2.
Liquid crystals are ordered soft materials formed by self‐organized molecules and can potentially be used as new functional materials for electron‐, ion‐ or molecular‐transport; optical; and bio‐active materials. In particular, the columnar liquid crystals are promising candidates used in various optical and electronic devices. For this purpose, design and synthesis of unconventional materials are essential. In this review, we have summarized several approaches for the synthesis of columnar liquid crystals composed of various heterocyclic systems. We also outline their liquid crystalline and other relevant properties, and their suitability for applications in diverse fields.  相似文献   

3.
Liquid-crystalline (LC) physical gels are a new class of dynamically functional materials consisting of liquid crystals and fibrous aggregates of molecules that are called "gelators". Liquid-crystalline physical gels, which are macroscopically soft solids, exhibit induced or enhanced electro-optical, photochemical, electronic properties due to the combination of two components that form phase-separated structures. In this tutorial review, we describe the materials design and structure-property relationships of the LC physical gels. The introduction of self-assembled fibers into nematic liquid crystals leads to faster responses in twisted nematic (TN) mode and high contrast switching in light scattering mode. Furthermore, the LC physical gels can be exploited as a new type of materials for electro-optical memory. This function is achieved by the control of reversible aggregation processes of gelators under electric fields in nematic liquid crystals. Electronic properties such as hole mobilities are improved by the introduction of fibrous aggregates into triphenylene-based columnar liquid crystals. The incorporation of photochromic azobenzenes or electroactive tetrathiafulvalenes into the chemical structures of gelators leads to the preparation of ordered functional materials.  相似文献   

4.
Owing to their dynamic attributes, non-covalent supramolecular interactions have enabled a new paradigm in the design and fabrication of multifunctional material systems with programmable properties, performances, and reconfigurable traits. Recently, the “halogen bond” has become an enticing supramolecular synthetic tool that displays a plethora of promising and advantageous characteristics. Consequently, this versatile and dynamic non-covalent interaction has been extensively harnessed in various fields such as crystal engineering, self-assembly, materials science, polymer chemistry, biochemistry, medicinal chemistry and nanotechnology. In recent years, halogen bonding has emerged as a tunable supramolecular synthetic tool in the design of functional liquid-crystalline materials with adjustable phases and properties. In this Concept article, the use of halogen bond in the field of stimuli-responsive smart soft materials, that is, liquid crystals is discussed. The design, synthesis and characterization of molecular and macromolecular liquid crystalline materials are described and the modulation of their properties has been emphasized. The power of halogen bonding in offering a large variety of functional liquid crystalline materials from readily accessible mesomorphic and non-mesomorphic complementary building blocks is highlighted. The article concludes with a perspective on the challenges and opportunities in this emerging endeavor towards the realization of enabling and elegant dynamic functional materials.  相似文献   

5.
Self-organization of disc-like molecules: chemical aspects   总被引:2,自引:0,他引:2  
The hierarchical self-assembly of disc-shaped molecules leads to the formation of discotic liquid crystals. These materials are of fundamental importance not only as models for the study of energy and charge migration in self-organized systems but also as functional materials for device applications such as, one-dimensional conductors, photoconductors, light emitting diodes, photovoltaic solar cells, field-effect transistors and gas sensors. The negative birefringence films formed by polymerized nematic discotic liquid crystals have been commercialized as compensation foils to enlarge the viewing angle of commonly used twisted nematic liquid crystal displays. To date the number of discotic liquid crystals derived from more than 50 different cores comes to about 3000. This critical review describes, after an in-depth introduction, recent advances in basic design principles and synthetic approaches towards the preparation of most frequently encountered discotic liquid crystals.  相似文献   

6.
Organic and polymeric molecules based on π-conjugated units represent an important class of components for optical and optoelectronic functionalized soft materials. Inspired by the innovative molecular design made by synthetic chemists, new functions and applications of π-conjugated molecules are continuously emerging. However, a challenge that remains is to soften these molecules. Alkylation is a commonly employed synthetic strategy to achieve functionalization in order to improve processability, i.e., solubility in volatile solvents, for better utilization in the rapidly-developing field of organic electronics. In addition it is recognized as a powerful strategy to tune the interaction among the π-conjugated moieties. In a different interpretation of alkylation, alkylated-π compounds can be viewed as a class of hydrophobic amphiphiles, since the rigid π-conjugated moiety and flexible alkyl chains are intrinsically immiscible. Recent studies have shown that such compounds can form a variety of self-organized solid and thermotropic liquid crystalline structures as well as nonassembled liquid forms depending upon the position, number and kinds of attached alkyl chains. Here, we present a brief overview of recent developments of alkylated-π chemistry, with an emphasis on the relationships between molecular design, self-assembly behavior and applications in optical and optoelectronic devices. We hope this review can serve as a guide and reference for people working in different research areas, including self-assembly and colloid sciences, synthetic and materials chemistry was well as organic electronics.  相似文献   

7.
Visible-light-driven molecular switches endowing reversible modulation of the functionalities of self-organized soft materials are currently highly sought after for fundamental scientific studies and technological applications. Reported herein are the design and synthesis of two novel halogen bond donor based chiral molecular switches that exhibit reversible photoisomerization upon exposure to visible light of different wavelengths. These chiral molecular switches induce photoresponsive helical superstructures, that is, cholesteric liquid crystals, when doped into the commercially available room-temperature achiral liquid crystal host 5CB, which also acts as a halogen-bond acceptor. The induced helical superstructure containing the molecular switch with terminal iodo atoms exhibits visible-light-driven reversible unwinding, that is, a cholesteric–nematic phase transition. Interestingly, the molecular switch with terminal bromo atoms confers reversible handedness inversion to the helical superstructure upon irradiation with visible light of different wavelengths. This visible-light-driven, reversible handedness inversion, enabled by a halogen bond donor molecular switch, is unprecedented.  相似文献   

8.
The architecture of three-dimensional interconnecting self-organized nanofiber networks from separate needlelike crystals of L-DHL (lanosta-8,24-dien-3beta-ol:24,25-dihydrolanosterol = 56:44) in di-isooctylphthalate has been achieved for the first time, on the basis of the completely new concept of branching creation by additives (branching promoters). [In this work, an additive, ethylene/vinyl acetate copolymer (EVACP), is used at a concentration of several 10 ppm.] We demonstrate that this novel technique enables us to produce previously unknown self-supporting supramolecular functional materials with tailormade micro- or nanostructures, possessing significantly modified macroscopic properties, by utilizing materials thus far considered to be "useless". In addition, both the self-organized structure and the properties of the new materials can be fine-tuned by altering the processing conditions. Our results show that the formation of the interconnecting 3D self-organized network structure is controlled by a new mechanism, so-called crystallographic mismatch branching mechanism, as opposed to the conventionally adopted molecular self-assembly mechanism. The principles and criteria for the selection of branching promoters are also discussed from the point of view of molecular structures.  相似文献   

9.
The ability to control finely the structure of materials remains a central issue in colloidal science. Due to their elastic properties, liquid crystals (LC) are increasingly used to organize matter at the micrometer scale in soft composites. Textures and shapes of LC droplets are currently controlled by the competition between elasticity and anchoring, hydrodynamic flows, or external fields. Molecules adsorbed specifically at LC interfaces are known to orient LC molecules (anchoring effect), but other induced effects have been poorly explored. Using specifically designed amphitropic surfactants, we demonstrate that large-shape transformations can be achieved in direct LC/water emulsions. In particular, we focus on unusual nematic filaments formed from spherical droplets. These results suggest new approaches to design new soft LC composite materials through the adsorption of molecules at liquid crystal interfaces.  相似文献   

10.
The design of efficient noncentrosymmetric materials remains the ultimate goal in the field of organic second‐order nonlinear optics. Unlike inorganic crystals currently used in second‐order nonlinear optical applications, organic materials are an attractive alternative owing to their fast electro‐optical response and processability, but their alignment into noncentrosymmetric film remains challenging. Here, symmetry breaking by judicious functionalization of 3D organic octupoles allows the emergence of multifunctional liquid crystalline chromophores which can easily be processed into large, flexible, thin, and self‐oriented films with second harmonic generation responses competitive to the prototypical inorganic KH2PO4 crystals. The liquid‐crystalline nature of these chiral organic films also permits the modulation of the nonlinear optical properties owing to the sensitivity of the supramolecular organization to temperature, leading to the development of tunable macroscopic materials.  相似文献   

11.
We report on the directed postsynthetic functionalization of soft DNA nanocomposite materials with proteins. Using the example of the functionalization of silica nanoparticle-modified DNA polymer materials with agonists or antagonists of the epidermal growth factor receptor EGFR cell membrane receptor, we demonstrate that hierarchically structured interfaces to living cells can be established. Owing to the modular design principle, even complex DNA nanostructures can be integrated into the materials, thereby enabling the high-precision arrangement of ligands on the lower nanometer length scale. We believe that such complex biohybrid material systems can be used for new applications in biotechnology.  相似文献   

12.
The self-assembly of liquid crystals (LCs) is a fascinating method for controlling the organization of discrete molecules into nanostructured functional materials. Although LCs are traditionally processed in thin films, their confinement within micrometre-sized droplets has recently revealed new properties and functions, paving the way for next-generation soft responsive materials. These recent findings have unlocked a wealth of unprecedented applications in photonics (e.g. reflectors, lasing materials), sensing (e.g. biomolecule and pathogen detection), soft robotics (e.g. micropumps, artificial muscles), and beyond. This Minireview focuses on recent developments in LC emulsion designs and highlights a variety of novel potential applications. Perspectives on the opportunities and new directions for implementing LC emulsions in future innovative technologies are also provided.  相似文献   

13.
This review concerns the behavior of a new class of LC composites with physical networks. These composites are prepared through the addition of some low-molecular-mass compounds (gelators) containing various functional groups to liquid crystals. In the medium of liquid crystals, gelators can form gels via non-covalent interactions, thereby stabilizing their structures. The structures of LC composites, their morphologies, and their optical and electro-optical properties are examined, and some application areas of these materials are illustrated.  相似文献   

14.
孟庆伟  谌东中 《化学通报》2005,68(9):667-673
从液晶基元连接方式、液晶分子拓扑结构以及凝聚态自组织方式等方面扼要介绍和评述了非传统型液晶分子设计与工程研究进展,并重点介绍了可望引起液晶显示技术革命的双轴向列相香蕉形液晶研究的突破性工作,展望了非传统型液晶分子设计和复杂自组织超分子液晶领域今后的发展方向。  相似文献   

15.
Soft matter has become involved in all aspects of everyday life over the past few decades, from diapers and the water-absorbing colloidal crystals hidden in them to the omnipresent liquid crystal displays. This article discusses an introduction to one example of soft matter – liquid crystals – at various educational levels. It stresses the importance of experimental work and presents a few simplified versions of elaborate techniques graduate students later meet in laboratories. A set of simple experiments, which illustrate typical phenomena for liquid crystals, but use different approaches or different materials than liquid crystals, are also presented. Drawing upon analogies is an essential part of an active researcher’s thought processes. By providing analogous experiences and showing clear analogies between various phenomena, a lecturer can train students in the use of analogies as a standard approach when encountering new problems.  相似文献   

16.
Much attention has recently been focused on a fascinating subclass of metal‐organic frameworks that behave in a remarkable stimuli‐responsive fashion. These soft porous crystals feature dynamic crystalline frameworks displaying reversible, large‐amplitude structural deformations under external physical constraints such as temperature, electric field or gas exposure. The number of reported syntheses of such materials is rapidly growing and they are promising for practical applications, such as gas capture, purification and fluid separation. Herein, we summarize the recently developed thermodynamic tools that can help understand the process of fluid adsorption and fluid mixture coadsorption in these flexible nanoporous materials. These tools, which include both molecular simulation methods and analytical models, can help rationalize experimental results and predict adsorption properties over a wide range of thermodynamic conditions. A particular focus is given on how these methods can guide the experimental exploration of a large number of materials and working conditions (temperature, pressure, composition) to help design efficient processes relying on fluid adsorption in soft porous crystals.  相似文献   

17.
This Minireview provides a critical account of the development of allene-containing advanced functional materials, starting with the design and synthesis of stable and enantiopure building blocks. A variety of systems, including shape-persistent macrocycles, foldamers, polymers, charge-transfer chromophores, dendrimers, liquid crystals, and redox-switchable chiral chromophores are discussed from the viewpoint of their syntheses, properties, and potential applications. The goal of this Minireview is to inspire new uses of enantiopure allenes for the rational design of advanced materials.  相似文献   

18.
孙振文  陈晓  王庐岩  邱化玉 《化学进展》2006,18(12):1584-1591
本文综述了以类脂为基础的仿生溶致液晶体系的构建与掺杂,对掺杂物质与液晶模板之间的相互作用进行了分析,并展望了仿生溶致液晶体系在合成新型功能材料、生物学和医学等领域应用的发展前景。  相似文献   

19.
Mechanically reconfigurable molecular crystals—ordered materials that can adapt to variable operating and environmental conditions by deformation, whereby they attain motility or perform work—are quickly shaping a new research direction in materials science, crystal adaptronics. Properties such as elasticity, superelasticity, and ferroelasticity, which are normally related to inorganic materials, and phenomena such as shape‐memory and self‐healing effects, which are well‐established for soft materials, are increasingly being reported for molecular crystals, yet their mechanism, quantification, and relation to the crystal structure of organic crystals are not immediately apparent. This Minireview provides a condensed topical overview of elastic, superelastic, and ferroelastic molecular crystals, new classes of materials that bridge the gap between soft matter and inorganic materials. The occurrence and detection of these unconventional properties, and the underlying structural features of the related molecular materials are discussed and highlighted with selected prominent recent examples.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号