首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While the field of organic electronics has developed extensively in recent years, it remains limited by number of materials available. Further expansion requires the innovation of new types of π‐conjugated backbones, but suitable candidates are discovered only very rarely. The recent introduction of a new class of conjugated materials, long α‐oligofurans, was therefore greeted with considerable interest. α‐Oligofurans possess many of the properties required to excel in applications as organic electronic materials, can be manufactured from renewable resources, and are expected to be biodegradable. This Minireview provides an account of long oligofurans from the perspectives of their synthesis, molecular properties, chemical reactivity, and use in electronic devices.  相似文献   

2.
A valuable class of new heterocyclic and alicyclic prochiral α‐aminomethylacrylates has been conveniently synthesized through a three‐step transformation involving a Baylis–Hillman reaction, O‐acetylation, and a subsequent allylic amination. The corresponding novel β2‐amino acid derivatives were prepared with excellent enantioselectivities and high yields by catalytic asymmetric hydrogenation using the catalyst rhodium(Et‐Duphos) (Et‐Duphos=2′,5′,2′′,5′′‐tetraethyl‐1,2‐bis(phospholanyl)benzene)) under mild reaction conditions (up to 99 % ee and S/C=1000). The influence of the substrate on the enantioselectivity and reactivity is investigated, and the most suitable substrate configuration for the highly efficient enantioselective hydrogenation of β‐substituted α‐aminomethylacrylates under the Rh–Duphos system is reported. The current protocol provides a very practical, facile, and scalable method for the preparation of heterocyclic and alicyclic β2‐amino acids and their derivatives.  相似文献   

3.
5,15‐Dioxaporphyrin was synthesized for the first time by a nucleophilic aromatic substitution reaction of a nickel bis(α,α′‐dibromodipyrrin) complex with benzaldoxime, followed by an intramolecular annulation of the α‐hydroxy‐substituted intermediate. This unprecedented molecule is a 20π‐electron antiaromatic system, in terms of Hückel's rule of aromaticity, because lone pair electrons of oxygen atoms are incorporated into the 18π‐electron conjugated system of the porphyrin. A theoretical analysis based on the gauge‐including magnetically induced current method confirmed its antiaromaticity and a dominant inner ring pathway for the ring current. The unique reactivity of 5,15‐dioxaporphyrin forming a β,β‐linked dimer upon oxidation was also revealed.  相似文献   

4.
A mild, palladium(II)‐catalyzed reaction of α‐allenols with α‐allenic esters in a heterocyclization/cross‐coupling sequence, applicable to a wide range of substitution patterns, has been developed for the preparation of 2,3,4‐trifunctionalized 2,5‐dihydrofurans. Our studies indicate high levels of chemo‐ and regiocontrol. The possibility of using optically active substrates as well as substrates of increased steric demand, such as tertiary α‐allenols, makes this novel sequence of heterocyclization/cross‐coupling an attractive method in organic synthesis. The current mechanistic hypothesis invokes a regiocontrolled palladium(II)‐mediated intramolecular oxypalladation of the free allenol component, that then undergoes a cross‐coupling reaction with the allenic ester partner, followed by a trans‐β‐deacyloxypalladation with concomitant regeneration of the PdII species.  相似文献   

5.
Due to their numerous reactivity modes, α‐aminonitriles represent versatile and valuable building blocks in organic total synthesis. Since their discovery by Adolph Strecker in 1850, this compound class has seen a wide dissemination in synthetic applications from laboratory to million‐ton industrial scale and was extensively used in the syntheses of various classes of natural products. As these compounds provide a multitude of reactivity options, we feel that a broad overview of their multiple reaction modes may reveal less familiar opportunities for successful total synthesis planning. This personal account article will thus focus on α‐aminonitriles used as key intermediates in selected natural product synthesis sequences which have been reported in the two decades since Enders’ and Shilvock's seminal review. Natural α‐aminonitriles will also briefly be treated.  相似文献   

6.
α‐Fluorocarbanions are key intermediates in nucleophilic fluoroalkylation reactions. Although frequently discussed, the origin of the fluorine effect on the reactivity of α‐fluorinated CH acids has remained largely unexplored. We have now investigated the kinetics of a series of reactions of α‐substituted carbanions with reference electrophiles to elucidate the effects of α‐F, α‐Cl, and α‐OMe substituents on the nucleophilic reactivities of carbanions.  相似文献   

7.
For the first time α‐diazocarbonyls have been used as highly active N‐terminal electrophiles in the presence of bicyclic amidine catalysts. The C? N bond‐forming reactions of active methylene compounds as C nucleophiles with α‐diazocarbonyls as N‐terminal electrophiles proceed quickly under ambient conditions, in the presence of 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU), because of the formation of the reactive N‐terminal electrophilic intermediates. DBU activates both the active methylene and α‐diazocarbonyl. Importantly, this reaction is general for both active methylenes and α‐diazocarbonyls, and the activation mode will lead to new synthetic applications of α‐diazocarbonyls.  相似文献   

8.
Enantioselective aldol reactions between substituted pyridine carbaldehydes and α‐ketoacids were shown to provide isotetronic acids or their corresponding pyridinium salts, depending on the nature of the substituents on the pyridine ring. The pyridinium salts were generated through nucleophilic attack of the pyridine nitrogen atom onto the reactive keto functional group. Moderate‐to‐good yields of both compounds were typically obtained and high levels of enantioselectivity were observed by using benzimidazole pyrrolidine I as a catalyst. Hydrogenation of the resulting pyridinium salts led to new indolizidines with high ee values and diastereocontrol. X‐ray diffraction studies allowed the determination of the relative configuration of the products. Finally, DFT calculations were performed to rationalize the divergent pathway as a function of the pyridine substituents.  相似文献   

9.
The oxidative copolymerization of indene with styrene, α‐methylstyrene, and α‐phenylstyrene is investigated. Copolyperoxides of different compositions have been synthesized by the free‐radical‐initiated oxidative copolymerization of indene with vinyl monomers. The compositions of the copolyperoxides obtained from the 1H and 13C NMR spectra have been used to determine the reactivity ratios of the monomers. The reactivity ratios indicate that indene forms an ideal copolyperoxide with styrene and α‐methylstyrene and alternating copolyperoxides with α‐phenylstyrene. Thermal degradation studies via differential scanning calorimetry and electron‐impact mass spectroscopy support the alternating peroxide units in the copolyperoxide chain. The activation energy for thermal degradation suggests that the degradation is dependent on the dissociation of the peroxide (? O? O? ) bonds in the backbone of the copolyperoxide chain. Their flexibility has been examined in terms of the glass‐transition temperature. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2004–2017, 2002  相似文献   

10.
In order to explore the existence of α‐effect in gas‐phase SN2@N reactions, and to compare its similarity and difference with its counterpart in SN2@C reactions, we have carried out a theoretical study on the reactivity of six α‐oxy‐Nus (FO?, ClO?, BrO?, HOO?, HSO?, H2NO?) in the SN2 reactions toward NR2Cl (R = H, Me) and RCl (R = Me, i‐Pr) using the G2(+)M theory. An enhanced reactivity induced by the α‐atom is found in all examined systems. The magnitude of the α‐effect in the reactions of NR2Cl (R = H, Me) is generally smaller than that in the corresponding SN2 reaction, but their variation trend with the identity of α‐atom is very similar. The origin of the α‐effect of the SN2@N reactions is discussed in terms of activation strain analysis and thermodynamic analysis, indicating that the α‐effect in the SN2@N reactions largely arises from transition state stabilization, and the “hyper‐reactivity” of these α‐Nus is also accompanied by an enhanced thermodynamic stability of products from the n(N) → σ*(O?Y) negative hyperconjugation. Meanwhile, it is found that the reactivity of oxy‐Nus in the SN2 reactions toward NMe2Cl is lower than toward i‐PrCl, which is different from previous experiments, that is, the SN2 reactions of NH2Cl is more facile than MeCl. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Gold‐catalyzed oxidations of 2‐ketonyl‐1‐ethynyl benzenes with N‐hydroxyanilines yield 2‐aminoindenone derivatives efficiently. Experimental data suggests that this process involves an α‐oxo gold carbene intermediate, generated from the attack of N‐hydroxyaniline on furylgold carbene intermediate, rather than the typical attack of oxidants on π‐alkynes.  相似文献   

12.
The combination of nickel metallaphotoredox catalysis, hydrogen atom transfer catalysis, and a Lewis acid activation mode, has led to the development of an arylation method for the selective functionalization of alcohol α‐hydroxy C?H bonds. This approach employs zinc‐mediated alcohol deprotonation to activate α‐hydroxy C?H bonds while simultaneously suppressing C?O bond formation by inhibiting the formation of nickel alkoxide species. The use of Zn‐based Lewis acids also deactivates other hydridic bonds such as α‐amino and α‐oxy C?H bonds. This approach facilitates rapid access to benzylic alcohols, an important motif in drug discovery. A 3‐step synthesis of the drug Prozac exemplifies the utility of this new method.  相似文献   

13.
Limonene 1,2‐oxide (LMO) and α‐pinene oxide (α‐PO) are two high reactivity biorenewable monomers that undergo facile photoinitiated cationic ring‐opening polymerizations using both diaryliodonium salt and triarylsufonium salt photoinitiators. Comparative studies showed that α‐PO is more reactive than LMO, and this is because it undergoes a simultaneous double ring‐opening reaction involving both the epoxide group and the cyclobutane ring. It was also observed that α‐PO also undergoes more undesirable side reactions than LMO. The greatest utility of these two monomers is projected to be as reactive diluents in crosslinking photocopolymerizations with multifunctional epoxide and oxetane monomers. Prototype copolymerization studies with several difunctional monomers showed that LMO and α‐PO were effective in increasing the reaction rates and shortening the induction periods of photopolymerizations of these monomers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

14.
In recent years, α‐imino rhodium carbene complexes derived by ring‐opening of N‐sulfonyl‐1,2,3‐triazoles have attracted much attention from organic chemists. Many transformations of these species have been reported that involve, in most cases, nucleophilic attack at the carbene center of the α‐imino rhodium carbene, facilitating the synthesis of a wide range of novel and useful compounds, particularly heterocycles. This Minireview mainly focuses on advances in the transformation of N‐sulfonyl‐1,2,3‐triazoles during the past two years.  相似文献   

15.
Here an efficient copper‐catalyzed cascade cyclization of azide‐ynamides via α‐imino copper carbene intermediates is reported, representing the first generation of α‐imino copper carbenes from alkynes. This protocol enables the practical and divergent synthesis of an array of polycyclic N‐heterocycles in generally good to excellent yields with broad substrate scope and excellent diastereoselectivities. Moreover, an asymmetric azide–ynamide cyclization has been achieved with high enantioselectivities (up to 98:2 e.r.) by employing BOX‐Cu complexes as chiral catalysts. Thus, this protocol constitutes the first example of an asymmetric azide–alkyne cyclization. The proposed mechanistic rationale for this cascade cyclization is further supported by theoretical calculations.  相似文献   

16.
The reactions of trifluoromethylated 2‐bromoenones and N,N′‐dialkyl‐1,2‐diamines have been studied. Depending on the structures of the starting compounds, the formation of 2‐trifluoroacetylpiperazine or 3‐trifluoromethylpiperazine‐2‐ones was observed. The mechanism of the reaction is discussed in terms of multistep processes involving sequential substitution of bromine in the starting α‐bromoenones and intramolecular cyclization of the captodative aminoenones as key intermediates to form the target heterocycles. The results of theoretical calculations are in perfect agreement with the experimental data. The unique role of the trifluoromethyl group in this reaction is demonstrated.  相似文献   

17.
Recently, α‐oligofurans have emerged as interesting and promising organic electronic materials that have certain advantages over α‐oligothiophenes. In this work, α‐oligofurans were studied computationally, and their properties were compared systematically with those of the corresponding oligothiophenes. Although the two materials share similar electronic structures, overall, this study revealed important differences between α‐oligofurans and α‐oligothiophenes. Twisting studies on oligofurans revealed them to be significantly more rigid than oligothiophenes in the ground state and first excited state. Neutral α‐oligofurans have more quinoid character, higher frontier orbital energies, and higher HOMO–LUMO gaps than their α‐oligothiophene counterparts. The theoretical results suggest that oligofurans (and subsequently polyfuran) have lower ionization potentials than the corresponding oligothiophenes (and polythiophene), which in turn predicts that oligofurans can be lightly doped more easily than oligothiophenes. Oligofuran dications (8 F2+–14 F2+) of medium‐sized and longer chain lengths show a polaron‐pair character, and the polycations of α‐oligofurans cannot accommodate high positive charges as easily as their thiophene analogues.  相似文献   

18.
α‐Arylcyclobutanones display unique reactivity that makes them valuable synthetic intermediates and target molecules. We describe the preparation of α‐aryl‐ and α‐heteroarylcyclobutanones through a direct α‐arylation reaction. Problematic fragmentations are avoided by the use of LiOtBu, which promotes a rapid but reversible self‐aldol reaction that slowly releases the enolate required for α‐arylation. We also demonstrate the ring expansion of α‐arylcyclobutanones, a process that is highlighted in the stereoselective synthesis of 1‐methoxy coniothyrinone D.  相似文献   

19.
A new strategy for the synthesis of tetrahydroisoquinolines based on the Pd0‐catalyzed intramolecular α‐arylation of sulfones is reported. The combination of this Pd‐catalyzed reaction with intermolecular Michael and aza‐Michael reactions allows the development of two‐ and three‐step domino processes to synthesize diversely functionalized scaffolds from readily available starting materials.  相似文献   

20.
We report high‐performance I+/H2O2 catalysis for the oxidative or decarboxylative oxidative α‐azidation of carbonyl compounds by using sodium azide under biphasic neutral phase‐transfer conditions. To induce higher reactivity especially for the α‐azidation of 1,3‐dicarbonyl compounds, we designed a structurally compact isoindoline‐derived quaternary ammonium iodide catalyst bearing electron‐withdrawing groups. The nonproductive decomposition pathways of I+/H2O2 catalysis could be suppressed by the use of a catalytic amount of a radical‐trapping agent. This oxidative coupling tolerates a variety of functional groups and could be readily applied to the late‐stage α‐azidation of structurally diverse complex molecules. Moreover, we achieved the enantioselective α‐azidation of 1,3‐dicarbonyl compounds as the first successful example of enantioselective intermolecular oxidative coupling with a chiral hypoiodite catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号