首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The size distributions of liquid‐crystal droplets in ultraviolet‐cured polymer‐dispersed liquid‐crystal cells have been studied with optical microscopy. It has been observed that (1) the relative masses of the liquid crystal and crosslinking agent determine the droplet size distribution for submicrometer droplet diameters and (2) only the liquid‐crystal mass fraction affects the droplet size distribution for diameters ranging from 1 to 4 μm. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1842–1848, 2005  相似文献   

2.
Polymer-dispersed liquid crystals (PDLC) are composite materials consisting of micron-sized droplets of liquid crystal dispersed in a polymer matrix. The easiest method to obtain a PDLC film is the polymerisation-induced phase separation process (PIPS). The liquid crystal is mixed with a monomer of low molecular weight and polymerisation is induced by heat or UV light. The increasing molecular weight of the polymer causes the phase separation of liquid crystal from the polymer matrix as micron-sized droplets. In this work, we have studied the structural changes induced in the polymer matrix of a PDLC after the PIPS process by deuterium nuclear magnetic resonance. Two different selectively deuterated monomers have been synthesized and investigated: isobutyl methacrylate (IBMA-d2) and methyl methacrylate (MMA-d3). The main results were the disappearance of the characteristic two-site hop in poly-IBMA, due to liquid crystal molecules, and the lack of unreacted MMA molecules in the liquid crystal droplets. In this last case, we found that it is possible to confine temporarily the unreacted MMA molecules within liquid crystal droplets.Abbreviations MMA Methyl methacrylate - IBMA Isobutyl methacrylate - PDLC Polymer-dispersed liquid crystal - PIPS Polymerisation-induced phase separation - 2H-NMR Deuterium nuclear magnetic resonance*Dedicated to Professor V. Bertini for his 70th birthday  相似文献   

3.
In order to study the droplet pattern and electro-optic (EO) behaviour of polymer dispersed liquid crystal (PDLC) with the addition of dye, dichroic polymer dispersed liquid crystal (DPDLC) films were prepared using a nematic liquid crystal (NLC), photo-curable polymer (NOA 65) and anthraquinone blue dichroic dye (B2), in equal ratio (1:1) of polymer and liquid crystal (LC) by polymerisation induced phase separation (PIPS) technique. Dichroic dye was taken in different concentration (wt./wt. ratio) as 0.0625%, 0.125%, 0.25%, 0.5% and 1% of the LC mixture in DPDLC films. Initially, in an open circuit when there is no proviso for external electric field (0 V), LC droplets in polymer matrix exhibited bipolar pattern, though on closing the circuit with the increase of electric field pattern of droplets starts changing, LC molecules align along the direction of applied electric field and aligned completely relatively at higher field (30 V), which illustrate vertical radial pattern. Further, results show that the DPDLC film containing 0.0625% dye concentration with consistent average droplet size ~4.30 μm, exhibits the best transmission at lower operating voltage.  相似文献   

4.
Partial off-state alignment of the liquid crystal in polymer dispersed liquid crystal (PDLC) droplets was obtained by the application of electric or magnetic fields during their formation. Photopolymerization was used to induce phase separation of the liquid droplets from monomer/liquid crystal solutions. Substantial director directionality was retained in these PDLC films after removal of the fields used during their formation. This alignment affected both the off-state and the on-state electro-optic properties of the films. Transverse electrical fields (5 to 60 V across a 15 μm thickness) applied during PDLC formation from a solution of E7 (BDH Ltd) in a monomer resulted in PDLC films with progressively lower off-state scattering and lower threshold voltage. Strong longitudinal magnetic fields (9 to 14 T) applied during PDLC formation with these materials resulted in strong polarization effects in the light scattering off-state. In the infrared region, where there is less light scattering than in the visible region, the longitudinally aligned films shows tunable birefringent electro-optic effects while retaining the fast time response characteristics of PDLC films with small droplet sizes.  相似文献   

5.
The polymer dispersed nematic liquid crystal (LC) with the tilted surface anchoring has been studied. The droplet orientational structures with two point surface defects – boojums and the surface ring defect – are formed within the films. The director tilt angle α = 40° ± 4° at the droplet interface and LC surface anchoring strength Ws ~ 10–6 (J m?2) have been estimated. The bipolar axes within the studied droplets of oblate ellipsoidal form can be randomly oriented are oriented randomly relatively to the ellipsoid axes as opposed to the droplets with homeotropic and tangential anchoring.  相似文献   

6.
Times of metastable droplet relaxation to their equilibrium state are calculated at saturated vapor pressures, depending on the droplet size. It is shown that for small droplets with radius R = 6 molecular diameters (or ~2 nm) the relaxation times are ~1 ns (which is comparable to the characteristic flight times of rarefied gas molecules). For large droplets with radius R ~ 800 molecular diameters, the relaxation times are as long as 10 μs. At a fixed droplet radius (6 ≤ R ≤ 800), the range of variation in relaxation time from the melting point to the critical temperature does not exceed one order of magnitude: the lower the temperature, the slower the relaxation process.  相似文献   

7.
The response times and operating voltages of light shutters formed from polymer dispersed liquid crystals (PDLCs) have been studied experimentally and the results compared with calculations based on non-sperhically shaped nematic droplet models. The experiments were performed on light shutters with elongated and uniformly aligned droplets where the relaxation time and voltage response were measured. It is shown that the droplet shape can be a dominant factor, particularly for the relaxation time, and the data are compared with equations derived in terms of the aspect ratio of the droplet l = a/b, where a and b are the lengths of the semi-major and semi-minor axes, respectively, of the elongated droplet. It is further demonstrated that the electric field inside the droplet can be considerably smaller than the applied field, due to the conductivity and dielectric properties of the polymer and liquid crystal materials. These data are used to obtain values for the ratio of the conductivities of the polymer binder and liquid crystal droplet, as well as the anisotropy of the conductivity in the liquid crystal.  相似文献   

8.
When investigated by optical microscopy between crossed polarizers, the isotropic to cholesteric transition may appear like fingerprint-patterned droplets embedded in a black isotropic matrix. In the present work, such PDLC-like (polymer dispersed liquid crystal) patterns, only occurring over 0.7 C, have been entrapped and stored at ambient temperature in a polymer film. We used a UV polymerization process with different sequences in which illumination time and UV power progressively vary. From a conceptual viewpoint, these PDLC-like patterns come solely from liquid crystalline material, whereas all the conventional PDLCs are binary mixtures of a macromolecular compound or 'prepolymer' with a conventional low molecular mass liquid crystal. The fact that isotropic matrix and cholesteric droplets differ only from the viewpoint of molecular order and not in their chemical nature, permits comparisons with the usual case for which the choice of polymer-forming material is crucial and the polymer/liquid crystal interface is an important factor for controlling PDLC electro-optic properties. The present system gives an opportunity to investigate by scanning electron microscopy (SEM) the droplet microstructure (isotropic-cholesteric interface, fingerprint patterns or defects), whereas previous SEM studies were focused on the shape and size of empty cavities, since the fluid liquid crystal was inevitably removed from the PDLC system.  相似文献   

9.
Single-chain surfactants usually emulsify and stabilize oily substances into droplets in an aqueous solution. Here, we report a coassembly system, in which single types of anionic or non-ionic surfactants emulsify a class of water-soluble nonamphiphilic organic salts with fused aromatic rings in aqueous solutions. The nonamphiphilic organic salts are in turn promoted to form droplets of water-based liquid crystals (chromonic liquid crystals) encapsulated by single-chain surfactants. The droplets, stabilized against coalescence by encapsulated in a layer (or layers) of single chain surfactants, are of both nonspherical tactoid (elongated ellipsoid with pointy ends) and spherical shapes. The tactoids have an average long axis of ~9 μm and a short axis of ~3.5 μm with the liquid crystal aligning parallel to the droplet surface. The spherical droplets are 5-10 μm in diameter and have the liquid crystal aligning perpendicular to the droplet surface and a point defect in the center. Cationic and zwitterionic surfactants studied in this work did not promote the organic salt to form droplets. These results illustrate the complex interplay of self-association and thermodynamic incompatibility of molecules in water, which can cause new assembly behavior, including potential formation of vesicles or other assemblies, from surfactants that usually form only micelles. These unprecedented tactoidal shaped droplets also provide potential for the fabrication of new soft organic microcapsules.  相似文献   

10.
《Liquid crystals》1999,26(12):1735-1741
When investigated by optical microscopy between crossed polarizers, the isotropic to cholesteric transition may appear like fingerprint-patterned droplets embedded in a black isotropic matrix. In the present work, such PDLC-like (polymer dispersed liquid crystal) patterns, only occurring over 0.7 C, have been entrapped and stored at ambient temperature in a polymer film. We used a UV polymerization process with different sequences in which illumination time and UV power progressively vary. From a conceptual viewpoint, these PDLC-like patterns come solely from liquid crystalline material, whereas all the conventional PDLCs are binary mixtures of a macromolecular compound or 'prepolymer' with a conventional low molecular mass liquid crystal. The fact that isotropic matrix and cholesteric droplets differ only from the viewpoint of molecular order and not in their chemical nature, permits comparisons with the usual case for which the choice of polymer-forming material is crucial and the polymer/liquid crystal interface is an important factor for controlling PDLC electro-optic properties. The present system gives an opportunity to investigate by scanning electron microscopy (SEM) the droplet microstructure (isotropic-cholesteric interface, fingerprint patterns or defects), whereas previous SEM studies were focused on the shape and size of empty cavities, since the fluid liquid crystal was inevitably removed from the PDLC system.  相似文献   

11.
Partial off-state alignment of the liquid crystal in polymer dispersed liquid crystal (PDLC) droplets was obtained by the application of electric or magnetic fields during their formation. Photopolymerization was used to induce phase separation of the liquid droplets from monomer/liquid crystal solutions. Substantial director directionality was retained in these PDLC films after removal of the fields used during their formation. This alignment affected both the off-state and the on-state electro-optic properties of the films. Transverse electrical fields (5 to 60 V across a 15 μm thickness) applied during PDLC formation from a solution of E7 (BDH Ltd) in a monomer resulted in PDLC films with progressively lower off-state scattering and lower threshold voltage. Strong longitudinal magnetic fields (9 to 14 T) applied during PDLC formation with these materials resulted in strong polarization effects in the light scattering off-state. In the infrared region, where there is less light scattering than in the visible region, the longitudinally aligned films shows tunable birefringent electro-optic effects while retaining the fast time response characteristics of PDLC films with small droplet sizes.  相似文献   

12.
赵军钗 《高分子科学》2013,31(9):1310-1320
Isotactic polypropylene (iPP) nanodroplets were prepared by using the classical droplet method in this study. The formation of nanodroplets allowed the controlled observation of polymer nucleation as well as access to crystal growth at exceptionally high supercooling in iPP. Three cases including the heterogeneous nucleation and fast crystallization in iPP droplets, the formation of multiple independent homogeneous nuclei within a single droplet and a single nucleus within a single droplet were detected by using atomic force microscopy (AFM) during gradually cooling after remelting the nanodroplets. Moreover, it is found that when the volume of droplet is larger than the value of ca. 130000 nm3, the first case was observed. Otherwise, the latter two cases appeared. The temperature at which the onset of nucleation was observed in individual droplets was found to be mainly dependent on height of the droplets when the size scale of the droplet is comparable to the size of the critical nucleus in at least one dimension, which indicates the nucleation behavior under confinement.  相似文献   

13.
Polymer films containing droplets of nematic liquid crystal form an important class of new electro-optic light valves and displays. While previous work has shown that the nematic droplet size is an important factor in the electro-optic properties of these films, here we report that the droplet shape is equally important in determing the electro-optics of the film. Electron micrographs show that for films using polyvinyl alcohol as the polymeric binder the cavities formed by the polymer matrix are oblate in nature, and aligned with the minor axis perpendicular to the film plane. In oblate cavities the elastic-deformation free energy is minimized when the director field in the droplet is aligned along a major axis of the spheroid; the electric field performs work on the nematic in reorienting the nematic into a higher-energy state, equal to the elastic-free-energy difference between the two configurations. Calculations and experiment are used to estimate the elastic and electric field free-energy-density changes that occur upon reorientation of the nematic droplet. The general agreement between these two values is used to indicate that droplet shape anisotropy is a major factor in determining the electrooptic properties of these films.  相似文献   

14.
Polymer films containing droplets of nematic liquid crystal form an important class of new electro-optic light valves and displays. While previous work has shown that the nematic droplet size is an important factor in the electro-optic properties of these films, here we report that the droplet shape is equally important in determing the electro-optics of the film. Electron micrographs show that for films using polyvinyl alcohol as the polymeric binder the cavities formed by the polymer matrix are oblate in nature, and aligned with the minor axis perpendicular to the film plane. In oblate cavities the elastic-deformation free energy is minimized when the director field in the droplet is aligned along a major axis of the spheroid; the electric field performs work on the nematic in reorienting the nematic into a higher-energy state, equal to the elastic-free-energy difference between the two configurations. Calculations and experiment are used to estimate the elastic and electric field free-energy-density changes that occur upon reorientation of the nematic droplet. The general agreement between these two values is used to indicate that droplet shape anisotropy is a major factor in determining the electrooptic properties of these films.  相似文献   

15.
The orientation order of nanoscale droplets of thermotropic liquid crystals (LCs) suspended in polymer dispersed liquid crystal (PDLC) solutions prepared with different medias (e.g., polymers, surfactants, nonpolar materials like dyes) respond sensitively and differently via molecular interactions. Such a valuable knowledge provides basis for understanding the properties of PDLC devices. Previously, many studies have explored the droplets size, electro-optical property variations in PDLC films by varying the materials types and its compositions. However, the variations in droplet orientation order with respect to material type and composition provide a new class of study in this particular field. The current study explored the transition in droplet orientation from bipolar to radial on varying the amphiphilic block copolymer concentrations. Further, the variations in surface energies of LCs in different series of block copolymer medias were investigated by contact angle measurements.  相似文献   

16.
The dynamics of chiral smectic phases of antiferroelectric liquid crystal MHPOBC in a confined geometry has been analysed. Using an electro-optic response technique, the temperature dependences of the relaxation rates and electro-optic strengths of the elementary excitations in thin, planar aligned, wedge-type cells of thickness from 0.3 to 4 μm have been measured and compared with those for a 50 μm hometropically aligned cell. The effects of the confined geometry are the following. (i) The smectic C* γ phase does not exist in planar aligned cells with thickness less than 4 μm. Instead of this phase, we have observed the coexistence of the ferroelectric smectic C* phase and the antiferroelectric smectic C* A phase over a very wide temperature range. (ii) The smectic C* α phase is stable at all measured thicknesses down to 0.3 μm. (iii) We have observed a decrease of the smectic A-smectic C* α phase transition temperature, proportional to the inverse of the cell thickness. (iv) Additional, thickness-independent phase modes have been observed above some critical value of the measuring electric field in all tilted phases.  相似文献   

17.
A novel method is described for the measurement of the droplet size distributions produced by nebulizers commonly employed in analytical atomic spectroscopy. It is shown theoretically that, at sufficiently high concentrations of dissolved sodium chloride, the evaporation of water from droplets as small as 0.5 μm in diameter may be reduced to a negligible level. When evaporation is reduced by the presence of a dissolved salt, a conventional cascade impactor may be used to elucidate the droplet size distribution. Empirical observations confirm that, at a sodium concentration of 10,000 μg ml?1, evaporation is negligible: the method may be used to study particle size distributions over the size range 0.5–10 μm.  相似文献   

18.
Nematic liquid crystal droplets dispersed in a thermoplastic matrix with a built-in d.c. electric field exhibit a quasi-linear response to an electric field. In this work we show a device characterized by a large light modulation. The device can store fields up to several V μm-1 and operates well from d.c. to several kHz. In addition, we found that the experimental results are in agreement with a simple theoretical model for light scattering by a dispersion of liquid crystal droplets. This device allows us to overcome possible drawbacks, due to a reduced light modulation, in applications where polarity detection is required.  相似文献   

19.
Samples of nematics stabilized by a polymer network, which are new composite materials, were prepared. A ZhK-1277 nematic composite and a bisphenyl-A-dimethacrylate monomer were used. Polymerization was conducted via UV radiation. The electro-optic properties, i.e., the dependence of transmittance and the turn-on and turn-off times on the electric voltage and layer thickness, of the resulting material and a pure nematic were studied. The experimental results are explained by the domain structure of the nematic in a polymer network, according to which the liquid crystal in an electro-optic cell is composed of oriented domains separated by thin partitions of the polymer. The size of the domain regions of the liquid crystal is 2 μm.  相似文献   

20.
Monodisperse poly(dl-lactic acid) (PLA) particles of diameters between 11 and 121 μm were fabricated in flow focusing glass microcapillary devices by evaporation of dichloromethane (DCM) from emulsion droplets at room temperature. The dispersed phase was 5% (w/w) PLA in DCM containing 0.1-2 mM Nile Red and the continuous phase was 5% (w/w) poly(vinyl alcohol) in reverse osmosis water. Particle diameter was 2.7 times smaller than the diameter of the emulsion droplet template, indicating very low particle porosity. Monodisperse droplets have only been produced under dripping regime using a wide range of dispersed phase flow rates (0.002-7.2 cm(3)·h(-1)), continuous phase flow rates (0.3-30 cm(3)·h(-1)), and orifice diameters (50-237 μm). In the dripping regime, the ratio of droplet diameter to orifice diameter was inversely proportional to the 0.39 power of the ratio of the continuous phase flow rate to dispersed phase flow rate. Highly uniform droplets with a coefficient of variation (CV) below 2% and a ratio of the droplet diameter to orifice diameter of 0.5-1 were obtained at flow rate ratios of 4-25. Under jetting regime, polydisperse droplets (CV > 6%) were formed by detachment from relatively long jets (between 4 and 10 times longer than droplet diameter) and a ratio of the droplet size to orifice size of 2-5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号