首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Preparation of two‐dimensional (2D) heterostructures is important not only fundamentally, but also technologically for applications in electronics and optoelectronics. Herein, we report a facile colloidal method for the synthesis of WOn ‐WX2 (n =2.7, 2.9; X=S, Se) heterostructures by sulfurization or selenization of WOn nanomaterials. The WOn ‐WX2 heterostructures are composed of WO2.9 nanoparticles (NPs) or WO2.7 nanowires (NWs) grown together with single‐ or few‐layer WX2 nanosheets (NSs). As a proof‐of‐concept application, the WOn ‐WX2 heterostructures are used as the anode interfacial buffer layer for green quantum dot light‐emitting diodes (QLEDs). The QLED prepared with WO2.9 NP‐WSe2 NS heterostructures achieves external quantum efficiency (EQE) of 8.53 %. To our knowledge, this is the highest efficiency in the reported green QLEDs using inorganic materials as the hole injection layer.  相似文献   

2.
Exploring advanced electrocatalysts for electrocatalytic hydrogen evolution is highly desired but remains a challenge due to the lack of an efficient preparation method and reasonable structural design. Herein, we deliberately designed novel Ag/WO3?x heterostructures through a supercritical CO2‐assisted exfoliation‐oxidation route and the subsequent loading of Ag nanoparticles. The ultrathin and oxygen vacancies‐enriched WO3?x nanosheets are ideal substrates for loading Ag nanoparticles, which can largely increase the active site density and improve electron transport. Besides, the resultant WO3?x nanosheets with porous structure can form during the electrochemical cycling process induced by an electric field. As a result, the exquisite Ag/WO3?x heterostructures show an enhanced hydrogen evolution reaction (HER) activity with a low onset overpotential of ≈30 mV, a small Tafel slope of ≈40 mV dec?1 at 10 mA cm?2, and as well as long‐term durability. This work sheds light on material design and preparation, and even opens up an avenue for the development of high‐efficiency electrocatalysts.  相似文献   

3.
《化学:亚洲杂志》2017,12(6):648-654
Herein, 9,10‐dihydro‐9,9‐dimethylacridine (Ac) or phenoxazine (PXZ)‐substituted isonicotinonitrile (INN) derivatives, denoted as 2AcINN , 26AcINN , and 26PXZINN , were developed as a series of thermally activated delayed fluorescence (TADF) emitters. These emitters showed reasonably high photoluminescence quantum yields of 71–79 % in the host films and high power efficiency organic light‐emitting diodes (OLEDs). Sky‐blue emitter 26AcINN exhibited a low turn‐on voltage of 2.9 V, a high external quantum efficiency (η ext) of 22 %, and a high power efficiency (η p) of 66 lm W−1 with Commission Internationale de l′Eclairage (CIE) chromaticity coordinates of (0.22, 0.45), whereas green emitter 26PXZINN exhibited a low turn‐on voltage of 2.2 V, a high η ext of 22 %, and a high η p of 99 lm W−1 with CIE chromaticity coordinates of (0.37, 0.58). These performances are among the best for TADF OLEDs to date.  相似文献   

4.
Two‐dimensional (2D) lateral heterostructures have emerged as a hot topic in the fast evolving field of advanced functional materials , but their fabrication is challenging. The layer‐structured WS2 was theoretically demonstrated to be inert to oxidation except for the monolayer, which can be selectively oxidized owing to the simultaneous interaction of oxygen with both sides. Combined with the theoretical calculations, a new method was developed for the successful construction of 2D lateral heterostructures of WS2/WO3?H2O in an ambient environment, based on a simple liquid‐phase solution exfoliation. These lateral heterostructures of WS2/WO3?H2O have interesting properties, as indicated by enhanced photocatalytic activity toward the degradation of methyl orange (MO).  相似文献   

5.
Controlled stacking of different two‐dimensional (2D) atomic layers will greatly expand the family of 2D materials and broaden their applications. A novel approach for synthesizing MoS2/WS2 heterostructures by chemical vapor deposition has been developed. The successful synthesis of pristine MoS2/WS2 heterostructures is attributed to using core–shell WO3?x/MoO3?x nanowires as a precursor, which naturally ensures the sequential growth of MoS2 and WS2. The obtained heterostructures exhibited high crystallinity, strong interlayer interaction, and high mobility, suggesting their promising applications in nanoelectronics. The stacking orientations of the two layers were also explored from both experimental and theoretical aspects. It is elucidated that the rational design of precursors can accurately control the growth of high‐quality 2D heterostructures. Moreover, this simple approach opens up a new way for creating various novel 2D heterostructures by using a large variety of heteronanomaterials as precursors.  相似文献   

6.
Aryl‐substituted phenanthroimidazoles (PIs) have attracted tremendous attention in the field of organic light‐emitting diodes (OLEDs), because they are simple to synthesize and have excellent thermal properties, high photoluminescence quantum yields (PLQYs), and bipolar properties. Herein, a novel blue–green emitting material, (E)‐2‐{4′‐[2‐(anthracen‐9‐yl)vinyl]‐[1,1′‐biphenyl]‐4‐yl}‐1‐phenyl‐1H‐phenanthro[9,10‐d]imidazole (APE‐PPI), containing a t‐APE [1‐(9‐anthryl)‐2‐phenylethene] core and a PI moiety was designed and synthesized. Owing to the PI skeleton, APE‐PPI possesses high thermal stability and a high PLQY, and the compound exhibits bipolar transporting characteristics, which were identified by single‐carrier devices. Nondoped blue–green OLEDs with APE‐PPI as the emitting layer show emission at λ=508 nm, a full width at half maximum of 82 nm, a maximum brightness of 9042 cd m?2, a maximum current efficiency of 2.14 cd A?1, and Commission Internationale de L'Eclairage (CIE) coordinates of (0.26, 0.55). Furthermore, a white OLED (WOLED) was fabricated by employing APE‐PPI as the blue–green emitting layer and 4‐(dicyanomethylene)‐2‐tert‐butyl‐6‐(1,1,7,7‐tetramethyljulolidin‐4‐yl‐vinyl)‐4H‐pyran (DCJTB) doped in tris‐(8‐hydroxyquinolinato)aluminum (Alq3) as the red–green emitting layer. This WOLED exhibited a maximum brightness of 10029 cd m?2, a maximum current efficiency of 16.05 cd A?1, CIE coordinates of (0.47, 0.47), and a color rendering index (CRI) of 85. The high performance of APE‐PPI‐based devices suggests that the t‐APE and PI combination can potentially be used to synthesize efficient electroluminescent materials for WOLEDs.  相似文献   

7.
Phase transition from WO3 to sub‐stoichiometric WO2.9 by a facile method has varied the typical semiconductor to be quasi‐metallic with a narrowed band gap and a shifted Femi energy to the conduction band, while maintaining a high crystallinity. The resultant WO2.9 nanorods possess a high total absorption capacity (ca. 90.6 %) over the whole solar spectrum as well as significant photothermal conversion capability, affording a conversion efficiency as high as around 86.9 % and a water evaporation efficiency of about 81 % upon solar light irradiation. Meanwhile, the promising potential of the nanorods for anticancer photothermal therapy have been also demonstrated, with a high photothermal conversion efficiency (ca. 44.9 %) upon single wavelength near‐infrared irradiation and a high tumor inhibition rate (ca. 98.5 %). This study may have opened up a feasible route to produce high‐performance photothermal materials from well‐developed oxides.  相似文献   

8.
With the target to design and develop new functionalized green triplet light emitters that possess distinctive electronic properties for robust and highly efficient phosphorescent organic light‐emitting diodes (PHOLEDs), a series of bluish–green to yellow–green phosphorescent tris‐cyclometalated homoleptic iridium(III) complexes [Ir(ppy‐X)3] (X=SiPh3, GePh3, NPh2, POPh2, OPh, SPh, SO2Ph, Hppy=2‐phenylpyridine) have been synthesized and fully characterized by spectroscopic, redox, and photophysical methods. By chemically manipulating the lowest triplet‐state character of Ir(ppy)3 with some functional main‐group 14–16 moieties on the phenyl ring of ppy, a new family of metallophosphors with high‐emission quantum yields, short triplet‐state lifetimes, and good hole‐injection/hole‐transporting or electron‐injection/electron‐transporting properties can be obtained. Remarkably, all of these IrIII complexes show outstanding electrophosphorescent performance in multilayer doped devices that surpass that of the state‐of‐the‐art green‐emitting dopant Ir(ppy)3. The devices described herein can reach the maximum external quantum efficiency (ηext) of 12.3 %, luminance efficiency (ηL) of 50.8 cd A?1, power efficiency (ηp) of 36.9 Lm W?1 for [Ir(ppy‐SiPh3)3], 13.9 %, 60.8 cd A?1, 49.1 Lm W?1 for [Ir(ppy‐NPh2)3], and 10.1 %, 37.6 cd A?1, 26.1 Lm W?1 for [Ir(ppy‐SO2Ph)3]. These results provide a completely new and effective strategy for carrier injection into the electrophosphor to afford high‐performance PHOLEDs suitable for various display applications.  相似文献   

9.
All‐inorganic perovskite solar cells with high efficiency and improved stability are promising for commercialization. A multistep solution‐processing method was developed to fabricate high‐purity inorganic CsPbBr3 perovskite films for use in efficient solar cells. By tuning the number of deposition cycles (n) of a CsBr solution, the phase conversion from CsPb2Br5 (n ≤3), to CsPbBr3 (n=4), and Cs4PbBr6 (n≥5) was optimized to achieve vertical‐ and monolayer‐aligned grains. Upon interfacial modification with graphene quantum dots, the all‐inorganic perovskite solar cell (without a hole‐transporting layer) achieved a power conversion efficiency (PCE) as high as 9.72 % under standard solar illumination conditions. Under challenging conditions, such as 90 % relative humidity (RH) at 25 °C or 80 °C at zero humidity, the optimized device retained 87 % PCE over 130 days or 95 % over 40 days, compared to the initial efficiency.  相似文献   

10.
The exceptional nature of WO3?x dots has inspired widespread interest, but it is still a significant challenge to synthesize high‐quality WO3?x dots without using unstable reactants, expensive equipment, and complex synthetic processes. Herein, the synthesis of ligand‐free WO3?x dots is reported that are highly dispersible and rich in oxygen vacancies by a simple but straightforward exfoliation of bulk WS2 and a mild follow‐up chemical conversion. Surprisingly, the WO3?x dots emerged as co‐reactants for the electrochemiluminescence (ECL) of Ru(bpy)32+ with a comparable ECL efficiency to the well‐known Ru(bpy)32+/tripropylamine (TPrA) system. Moreover, compared to TPrA, whose toxicity remains a critical issue of concern, the WO3?x dots were ca. 300‐fold less toxic. The potency of WO3?x dots was further explored in the detection of circulating tumor cells (CTCs) with the most competitive limit of detection so far.  相似文献   

11.
An (oxy)nitride‐based heterostructure for powdered Z‐scheme overall water splitting is presented. Compared with the single MgTa2O6?xNy or TaON photocatalyst, a MgTa2O6?xNy /TaON heterostructure fabricated by a simple one‐pot nitridation route was demonstrated to effectively suppress the recombination of carriers by efficient spatial charge separation and decreased defect density. By employing Pt‐loaded MgTa2O6?xNy /TaON as a H2‐evolving photocatalyst, a Z‐scheme overall water splitting system with an apparent quantum efficiency (AQE) of 6.8 % at 420 nm was constructed (PtOx‐WO3 and IO3?/I? pairs were used as an O2‐evolving photocatalyst and a redox mediator, respectively), the activity of which is circa 7 or 360 times of that using Pt‐TaON or Pt‐MgTa2O6?xNy as a H2‐evolving photocatalyst, respectively. To the best of our knowledge, this is the highest AQE among the powdered Z‐scheme overall water splitting systems ever reported.  相似文献   

12.
The conversion of fructose to 1,2‐propylene glycol (PG) is an important process from cellulosic biomass to high‐value added chemicals. Herein, Ru‐WOx/hydroxyapatite (HAP) catalyst was employed for this reaction and reached up to 91.3% yield of PG at 180 °C, 1 MPa initial hydrogen for 8 h in water. On this catalyst, Ru and WOx were highly dispersed on HAP support and they interacted with each other to form a special catalytic center. The lack of isolated Ru or RuW alloy site led to a moderate activity for hydrogenolysis and hindered the further conversion of PG to propanol. The weak basic HAP support efficiently prevented the humin formation. This precisely controlled catalyst has potential in green PG production.  相似文献   

13.
Green‐emitting substituted poly[(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(2,5‐dihexyloxy‐1,4‐phenylenevinylene)]s ( 6 ) were synthesized via the Wittig–Horner reaction. The polymers were yellow resins with molecular weights of 10,600. The ultraviolet–visible (UV–vis) absorption of 6 (λmax = 332 or 415 nm) was about 30 nm redshifted from that of poly[(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(1,4‐phenylenevinylene)] ( 2 ) but was only 5 nm redshifted with respect to that of poly[(1,3‐phenylenevinylene)‐alt‐(2,5‐dihexyloxy‐1,4‐phenylenevinylene)] ( 1 ). A comparison of the optical properties of 1 , 2 , and 6 showed that substitution on m‐ or p‐phenylene could slightly affect their energy gap and luminescence efficiency, thereby fine‐tuning the optical properties of the poly[(m‐phenylene vinylene)‐alt‐(p‐phenylene vinylene)] materials. The vibronic structures were assigned with the aid of low‐temperature UV–vis and fluorescence spectroscopy. Light‐emitting‐diode devices with 6 produced a green electroluminescence output (emission λmax ~ 533 nm) with an external quantum efficiency of 0.32%. Substitution at m‐phenylene appeared to be effective in perturbing the charge‐injection process in LED devices. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1820–1829, 2004  相似文献   

14.
2,3,4,5‐Tetraarylsiloles are a class of important luminogenic materials with efficient solid‐state emission and excellent electron‐transport capacity. However, those exhibiting outstanding electroluminescence properties are still rare. In this work, bulky 9,9‐dimethylfluorenyl, 9,9‐diphenylfluorenyl, and 9,9′‐spirobifluorenyl substituents were introduced into the 2,5‐positions of silole rings. The resulting 2,5‐difluorenyl‐substituted siloles are thermally stable and have low‐lying LUMO energy levels. Crystallographic analysis revealed that intramolecular π–π interactions are prone to form between 9,9′‐spirobifluorene units and phenyl rings at the 3,4‐positions of the silole ring. In the solution state, these new siloles show weak blue and green emission bands, arising from the fluorenyl groups and silole rings with a certain extension of π conjugation, respectively. With increasing substituent volume, intramolecular rotation is decreased, and thus the emissions of the present siloles gradually improved and they showed higher fluorescence quantum yields (ΦF=2.5–5.4 %) than 2,3,4,5‐tetraphenylsiloles. They are highly emissive in solid films, with dominant green to yellow emissions and good solid‐state ΦF values (75–88 %). Efficient organic light‐emitting diodes were fabricated by adopting them as host emitters and gave high luminance, current efficiency, and power efficiency of up to 44 100 cd m?2, 18.3 cd A?1, and 15.7 lm W?1, respectively. Notably, a maximum external quantum efficiency of 5.5 % was achieved in an optimized device.  相似文献   

15.
In this work, we develop a low‐temperature, facile solution reaction route for the fabrication of quantum‐dot‐sensitized solar cells (QDSSCs) containing Ag2S‐ZnO nanowires (NWs), simultaneously ensuring low manufacturing costs and environmental safety. For comparison, a CdS‐ZnO NW photoanode was also prepared using the layer‐by‐layer growth method. Ultraviolet photoelectron spectroscopy analysis revealed type‐II band alignments for the band structures of both photoanodes which facilitate electron transfer/collection. Compared to CdS‐ZnO QDSSCs, Ag2S‐ZnO QDSSCs exhibit a considerably higher short‐circuit current density (Jsc) and a strongly enhanced light‐harvesting efficiency, but lower open‐circuit voltages (Voc), resulting in almost the same power‐conversion efficiency of 1.2 %. Through this work, we demonstrate Ag2S as an efficient quantum‐dot‐sensitizing material that has the potential to replace Cd‐based sensitizers for eco‐friendly applications.  相似文献   

16.
Organic micro‐heterostructures (MHS) with dual optical emissions are essential to produce miniaturized optical waveguides for wavelength division multiplexing technologies. The bimolecular MHS produced by solution‐based bottom‐up self‐assembly technique often leads to poor surface smoothness, edge imperfection, defects, and unwanted thin films deposits. Conversely, sequential sublimation technique at ambient pressure facilitates effective integration of α‐perylene micro‐square with dicyanomethylene‐2‐methyl‐6‐(p‐dimethylaminostyryl) 4H‐pyran (DCM) microrods in an epitaxial manner to produce MHS. The obtained DCM/perylene MHS act as optical waveguides to produce red (λmax≈670 nm) or/and yellow (λmax≈607 nm) dual optical outputs via an energy transfer mechanism depending upon the heterostructures geometry and optical excitation positions. The presented dual‐color emitting MHS optical waveguides are essential for the integrated nano‐photonic and optoelectronic device structures.  相似文献   

17.
A new series of copolymers with high brightness and luminance efficiency were synthesized using the Gilch polymerization method, and their electro‐optical properties were investigated. The weight‐average molecular weights (Mw) and polydispersities of the synthesized poly(9,9‐dioctylfluorenyl‐2,7‐vinylene) [poly(FV)], poly[2‐(3‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [poly(m‐SiPhPV)], and poly[9,9‐di‐n‐octylfluorenyl‐2,7‐vinylene]‐co‐(2‐(3‐dimethyldodecylsilylphenyl)‐1,4‐phenylene vinylene)] [poly(FV‐com‐SiPhPV)] were found to be in the ranges of (8.7–32.6) × 104 and 2.3–5.4, respectively. It was found that the electro‐optical properties of the copolymers could be adjusted by controlling the feed ratios of the comonomers. Thin films of poly(FV), poly(m‐SiPhPV), and poly(FV‐com‐SiPhPV) were found to exhibit photoluminescence quantum yields between 21% and 42%, which are higher than those of MEH‐PPV. Light‐emitting diodes were fabricated in ITO/PEDOT/light‐emitting polymer/cathode configurations using either double layer (LiF/Al) or triple layer (Alq3/LiF/Al) cathode structures. The performance of the polymer light‐emitting diodes (PLEDs) with triple layer cathodes was found to be better than that of the PLEDs with double layer cathodes in poly(FV) and poly(FV‐com‐SiPhPV). The turn‐on voltages of the PLEDs were in the range of 4.5–6.0 V, with maximum brightness and luminance efficiency up to 9691 cd/m2 at 16 V and 3.27 cd/A at 13 V, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5062–5071, 2005  相似文献   

18.
A series of white polymer light emitting displays (PLEDs) based on a polymer blend of polyalkylfluorenes and poly(2‐methoxy‐5,2′‐ethyl‐hexyloxy‐1,4‐phenylene vinylene) (MEH‐PPV) was developed. MEH‐PPV or red light emitting alkyfluorene copolymer (PFR) was blended with blue light emitting alkyfluorene copolymer (PFB), and MEH‐PPV was blended with both green light emitting alkyfluorene copolymer (PFG) and PFB to generate white light emission PLEDs. Low turn on voltage (2.7 V), high brightness (12,149 nits), high efficiency (4.0 cd/A, 4.0 lm/W), and good color purity (Commission Internationale de L'Eclairage (CIEx,y) co‐ordinates (0.32, 0.34)) were obtained for the white PLEDs based on the PFB and MEH‐PPV polymer blend. Exciplex formation in the interface between PFR and PFB induced a new green emission peak for these two components based white PLEDs. As a result, strong white emission (4078 nits) was obtained by mixing the red, green, and blue (RGB) three primary colors. High color purity of blue (CIE, x = 0.14, y = 0.08), green (CIE, x = 0.32, y = 0.64) and red (CIE, x = 0.67, y = 0.33) emissions was achieved for white PLEDs combining with dielectric interference color‐filters. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 330–341, 2007  相似文献   

19.
《化学:亚洲杂志》2017,12(19):2597-2603
In this paper, an Ag‐doped WO3 (and MoO3) composite has been prepared by following a simple micelle‐directed method and high‐temperature sintering route. The as‐prepared samples were characterized by X‐ray diffraction, inductively coupled plasma, transmission electron microscopy, X‐ray photoelectron spectroscopy, UV/Vis diffuse reflectance spectroscopy, Brunauer–Emmett–Teller, photoluminescence spectroscopy, and electrochemical impedance spectroscopy techniques. The photocatalytic experiments reveal that their oxygen‐production rates are up to 95.43 μmol (75.45 μmol) for Ag‐doped WO3 (MoO3), which is 9.5 (7.3) times higher than that of pure WO3: 9.012 μmol (MoO3: 9.00 μmol) under visible‐light illumination (λ ≥420 nm), respectively. The improvement of their photocatalytic activity is attributed to the enhancement of their visible‐light absorption and the separation efficiency of photogenerated carriers by Ag doping. Moreover, Ag‐doped WO3 (MoO3) also shows excellent adsorption of rhodamine B (RhB) and methylene blue (MB) in aqueous solution, with maximum adsorption capacities towards RhB and MB of 822 and 820 mg g−1 for Ag‐doped WO3, and 642 and 805 mg g−1 for Ag‐doped MoO3, respectively.  相似文献   

20.
In this paper, the electroluminescent properties of a new partially‐conjugated hyperbranched poly (p‐phenylene vinylene) (HPPV) were studied. The single layer light‐emitting device with HPPV as the emitting layer emits blue‐green light at 496 nm, with a luminance of 160 cd/m2 at 9 V, a turn‐on voltage of 4.3 V and an electroluminescent efficiency of 0.028 cd/A. By doping an electron‐transport material [2‐(4‐biphenylyl)‐5‐phenyl‐1,3,4‐oxadiazole, PBD] into the emitting layer and inserting a thin layer of tris(8‐hydroxy‐quinoline)aluminum (Alq3) as electron transporting/hole blocking layer for the devices, the electroluminescent efficiency of 1.42 cd/A and luminance of 1700 cd/m2 were achieved. The results demonstrate that the devices with the hyperbranched polymers as emitting material can achieve high efficiency through optimization of device structures. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号