首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solvent vapor annealing (SVA) is one route to prepare block copolymer (BCP) thin films with long‐range lateral ordering. The lattice defects in the spin‐coated BCP thin film can be effectively and rapidly reduced using SVA. The solvent evaporation after annealing was shown to have a significant impact on the in‐plane ordering of BCP microdomains. However, the effect of solvent evaporation on the out‐of‐plane defects in BCPs has not been considered. Using grazing‐incidence x‐ray scattering, the morphology evolution of lamellae‐forming poly(2‐vinlypyridine)‐b‐polystyrene‐b‐poly(2vinylpyridine) triblock copolymers, having lamellar microdomains oriented normal to substrate surface during SVA, was studied in this work. A micelle to lamellae transformation was observed during solvent uptake. The influence of solvent swelling ratio and solvent removal rate on both the in‐plane and out‐of‐plane defect density was studied. It shows that there is a trade‐off between the in‐plane and out‐of‐plane defect densities during solvent evaporation. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 980–989  相似文献   

2.
Controlling the macroscopic orientation of nanoscale periodic structures of amphiphilic liquid crystalline block copolymers (LC BCPs) is important to a variety of technical applications (e.g., lithium conducting polymer electrolytes). To study LC BCP domain orientation, a series of LC BCPs containing a poly(ethylene oxide) (PEO) block as a conventional hydrophilic coil block and LC blocks containing azobenzene mesogens is designed and synthesized. LC ordering in thin films of the BCP leads to the formation of highly ordered, microphase‐separated nanostructures, with hexagonally arranged PEO cylinders. Substitution on the tail of the azobenzene mesogen is shown to control the orientation of the PEO cylinders. When the substitution on the mesogenic tails is an alkyl chain, the PEO cylinders have a perpendicular orientation to the substrate surface, provided the thin film is above a critical thickness value. In contrast, when the substitution on the mesogenic tails has an ether group the PEO cylinders assemble parallel to the substrate surface regardless of the film thickness value. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 532–541  相似文献   

3.
We present an overview of the recent progress on the phase transition in the block copolymer (BCP) films in terms of the interfacial interactions effects of the substrates and the χ (Flory-Huggins segmental interaction parameter) effects between the two blocks. For the BCP films thinner than a critical thickness (Lc) above which the transition is independent of film thickness, the order-to-disorder transition (ODT) increased or decreased with decreasing film thickness depending on the interfacial interaction types. The rapid and slow changes in the ODT were attributed to the relative magnitude of enthalpic contribution to χ between two blocks. Interestingly, a periodic amplification in the block composition for the BCP films suppressed the compositional fluctuation in the film geometry, resulting in the ODT shifts from the bulk ODTs above Lc. This effect of the BCP films was more illustrated by the ODT shift effects depending on the strength of the preferential interactions on the substrates. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

4.
Nanoparticles provide an attractive route to modifying polymer thin film properties, yet controlling the dispersion and morphology of functionalized nanoparticle filled films is often difficult. Block copolymers can provide an ideal template for directed assembly of nanoparticles under controlled nanoparticle‐polymer interactions. Previously we observed that neat films of cylinder forming poly(styrene‐b‐methyl methacrylate) PS‐b‐PMMA block copolymer (c‐BCP) orient vertically with dynamic sharp thermal cold zone annealing (CZA‐S) over wide range of CZA‐S speed (0.1–10) μm/s. Here, we introduce a low concentration (1–5 wt %) of nanoparticles of phenolic group functionalized CdS (fCdS‐NP), to PMMA cylinder forming polystyrene‐b‐poly (methyl methacrylate) block copolymer (c‐BCP) films. Addition of the fCdS‐NP induces a vertical to horizontal orientation transition at low CZA‐S speed, V = 5 μm/s. The orientation flip studies were analyzed using AFM and GISAXS. These results confirm generality of our previously observed orientation transition in c‐BCP under low speed CZA‐S with other nanoparticles (gold [Au‐NP], fulleropyrrolidine [NCPF‐NP]) in the same concentration range, but reveal new aspects not previously examined: (1) A novel observation of significant vertical order recovery from 5–10% vertical cylindrical fraction at V = 5 μm/s to 46–63% vertical cylindrical fraction occurring at high CZA‐S speed, V = 10 μm/s for the fCdS nanoparticle filled films. (2) We rule out the possibility that a nanoparticle wetting layer on the substrate is responsible for the vertical to horizontal flipping transition. (3) We demonstrate that the orientation flipping results can be achieved in a nanoparticle block copolymer system where the nanoparticles are apparently better‐dispersed within only one (matrix PS) domain unlike our previous nanoparticle system studied. We consider facile processing conditions to fabricate functionalized nanoparticles filled PS‐PMMA block copolymer films with controlled anisotropy, a useful strategy in the design of next generation electronic and photonic materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 604–614  相似文献   

5.
An easily removable, water‐soluble top coat of polyvinylpyrrolidone (PVP) is used to control the orientation of microdomains in a liquid crystalline block copolymer (LC BCP, poly(ethylene oxide)‐block‐poly(6‐(4‐methoxy‐azobenzene‐4′‐butyl) hexyl methacrylate)). The corresponding LC homopolymer is also investigated for comparison. Atomic force microscopy is used to determine the orientation of the cylindrical microdomains of the LC BCP. UV–vis spectroscopy and grazing incidence wide‐angle X‐ray scattering are used to determine the orientation of the LC mesogens in the LC homopolymer and the LC BCP films annealed both with and without a top coat. Once the LC BCP morphology is self‐assembled, the PVP top coat layer can be easily removed with water or alcohol. The facile removal of the top coat improves the processability of BCPs in technological applications, and enables direct investigation of the BCP morphology in scientific studies. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1569–1574  相似文献   

6.
Herein, we present a simple method for producing nanoporous templates with a high degree of lateral ordering by self‐assembly of block copolymers. A key feature of this approach is control of the orientation of polymeric microdomains through the use of hydrophilic additives as structure directing agents. Incorporation of hydrophilic poly(ethylene oxide) (PEO) moieties into poly(styrene‐b‐methyl methacrylate) (PSt‐b‐PMMA) diblock copolymers gives vertical alignment of PMMA cylinders on the substrate after solvent annealing. Because of the miscibility between PEO and PMMA, PEO additives were selectively positioned within PMMA microdomains and by controlling the processing conditions, it was found that ordering of PSt‐b‐PMMA diblock copolymers could be achieved. The perpendicular orientation of PMMA cylinders was achieved by increasing the molecular size of the PEO additives leading to an increased hydrophilicity of the PMMA domains and consequently to control the orientation of microdomains in PSt‐b‐PMMA block copolymer thin films. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8041–8048, 2008  相似文献   

7.
Controlling the morphology, domain orientation, and domain size of block copolymer (BCP) thin films is desirable for many applications in nanotechnology. These properties can be tuned during solvent annealing by varying the solvent choice and degree of swelling which affect the effective miscibility and volume fraction of the BCP domains. In this work, we demonstrate with a bulk lamellae‐forming BCP, poly(4‐trimethylsilylstyrene‐block‐D ,L ‐lactide) (PTMSS‐b‐PLA), that varying the composition of a mixture of solvent vapors containing cyclohexane (PTMSS‐selective) and acetone (PLA‐selective), enables formation of perpendicularly oriented lamellae with sub‐20‐nm pitch lines. The BCP domain periodicity was also observed to increase by 30%, compared to bulk, following solvent annealing. Furthermore, solvent annealing alone is shown to induce a transition from a disordered to an ordered BCP. We rationalize our observations by hypothesizing that the use of a combination of domain selective solvent mixtures serves to increase the effective repulsion between the blocks of the copolymer. We furnish results from self‐consistent field theory calculations to support the proposed mechanism. © 2013 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 36–45  相似文献   

8.
The self‐assembly of a metallo‐supramolecular PS‐[Ru]‐PEO block copolymer, where ‐[Ru]‐ is a bis‐2,2′:6′,2″‐terpyridine‐ruthenium(II) complex, in thin films was investigated. Metallo‐supramolecular copolymers exhibit a different behavior as compared to their covalent counterparts. The presence of the charged complex at the junction of the two blocks has a strong impact on the self‐assembly, effecting the orientation of the cylinders and ordering process. Poly(ethylene oxide) cylinders oriented normal to the film surface are obtained directly regardless of the experimental conditions over a wide range of thicknesses. Exposure to polar solvent vapors can be used to improve the lateral ordering of the cylindrical microdomains. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4719–4724, 2008  相似文献   

9.
A phenanthrodithiophene (PDT)-difluorobenzoxadiazole (DFBO) copolymer, P-PDT-DFBO , was synthesized and characterized. Replacing a thiadiazole with an oxadiazole ring gives the synthesized polymer a highest occupied molecular orbital (HOMO) about 0.1 V lower, and lowest unoccupied molecular orbital energy levels lower than those of its benzothiadiazole (BT) counterpart, due to the more electron-deficient oxadiazole. Furthermore, since oxadiazole has a larger dipole moment than BT, P-PDT-DFBO exhibits greater aggregation strength than previously reported for P-PDT-DFBT . The low-lying HOMO level of P-PDT-DFBO gave about 0.1 V higher open-circuit voltage (Voc), yielding over 0.9 V in a fabricated solar cell. From grazing incidence wide-angle X-ray diffraction analysis, P-PDT-DFBO formed a favorable face-on orientation in both neat and blended films, indicating that the incorporation of an oxadiazole moiety can enhance Voc without any orientation change in the solid state. However, a P-PDT-DFBO -based cell exhibited significantly lower Jsc and FF, and thus less power conversion efficiency, not >4.43%, due to its lower hole mobility than P-PDT-DFBT . One possible reason for poor performance may be the low crystallinity of P-PDT-DFBO in blended film. This may be caused by its strong aggregation tendency, leading to fast crystallization into a semiamorphous structure or to interference with the construction of long-range ordered structure. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2646–2655  相似文献   

10.
We reported the synthesis and morphology of a novel alkyne‐functionalized diblock copolymer (di‐BCP) poly(methyl methacrylate‐random‐propargyl methacrylate)‐block‐poly(4‐bromostyrene). The di‐BCPs were synthesized by atom transfer radical polymerization and postpolymerization deprotection, with good control over molecular weight and polydispersity index. Microphase separation in bulk di‐BCPs was confirmed by thermal analysis, small‐angle X‐ray scattering, and transmission electron microscopy. Microphase‐separated morphologies were also observed in thin films, and the orientation of the microdomains can be conveniently controlled by annealing under different solvents. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

11.
Microwave annealing enables rapid (60 s) ordering and orientation of block copolymer films. The developed morphology in polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA) thin films depends on details of the heating rate that is controlled by microwave output energy as well as the sample location in the microwave. Over a wide heating rate (1.1–2.7 °C/s), perpendicular orientation of the cylindrical mesostructure at the surface is >50% after 60 s, but goes through a maximum at 1.8 °C/s leading to approximately 97% perpendicular cylinders at the surface. The propagation of this perpendicular surface morphology through the film thickness is also dependent upon the microwave annealing conditions. The surface structure evolves with the microwave annealing time from imperfect ordering to perpendicular cylinders to parallel cylinders as the annealing time increases. This work demonstrates the importance of controlling the heating rate during microwave annealing, which will be critical for optimizing microwave conditions for directed self‐assembly. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1499–1506  相似文献   

12.
We demonstrate the use of combined thermal annealing and solvent vapor annealing (SVA) to tune the morphology of thermally responsive block copolymer (BCP) thin films. The BCP, poly(styrene‐btert‐butyl acrylate) (PS‐b‐PtBA), undergoes a chemical deprotection to poly(styrene‐b‐acrylic anhydride) (PS‐b‐PAH) above a temperature threshold, giving rise to a structural and morphological transition. Our experiments systematically examine different thermal annealing and SVA protocols with two solvents (tetrahydrofuran and acetone) and map the resulting morphologies. Assessments of these processing protocols were accelerated using temperature gradients. Our results demonstrate that the final nanoscale morphologies after SVA are determined by the changes in the relative solvent/polymer interactions and surface tensions of the polymer blocks that accompany deprotection. Because of these driving forces, certain processing combinations led to irreversible morphological states, whereas others present opportunities for further manipulation. Accordingly, our study reveals that the morphology of this thermally sensitive BCP can be altered through judicious choice of annealing protocol. The protocols that combine equal numbers of SVA and thermal annealing (TA) steps are not necessarily equivalent, and the order of the SVA relative to TA is a deciding factor in the final morphology. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

13.
We investigated the effects of lithium bromide (LiBr) on the structure and properties of polyamide 6 (PA6). The strong ion–dipole interactions between lithium cations and the amide groups in PA6 greatly increased the glass transition temperature (Tg) and retarded the crystallization rate of PA6. As a result, compression-molded PA6 blends were highly transparent and had high Tg values. The rheological terminal region was obvious in the blends because the ion–dipole interactions weakened at high temperatures. This indicates that the melt processability was barely affected by LiBr. We also evaluated the optical anisotropy of the polymer to determine its suitability as a functional optical film. We found that hot-stretched blend films had large positive orientation birefringence with significantly weak wavelength dispersion, which can be attributed to the enhanced anisotropic polarizability of PA6. We also found that the stress-optical coefficient in the glassy region decreased with increasing LiBr content. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1513–1520  相似文献   

14.
A series of diblock copolymers of n‐pentyl methacrylate and methyl methacrylate (PPMA/PMMA BCP) with one or two terminal functional groups was prepared by sequential anionic polymerization of PMA and MMA using an allyl‐functionalized initiator and/or and end‐capping with allyl bromide. Allyl functional groups were successfully converted into OH groups by hydroboration. The morphology in bulk was examined by temperature‐dependent small‐angle X‐ray measurements (T‐SAXS) and transmission electron microscopy (TEM) showing that functional groups induced a weak change in d‐spacings L0 as well as in the thermal expansion behavior. T‐SAXS proved that the lamellar morphologies were stable over multiple heating/cooling cycles without order‐disorder transition (ODT) until 300 °C. While non‐functionalized BCP formed parallel lamellae morphologies, additional OH‐termination at the PMMA block forced in very thin films (ratio between film thickness and lamellar d‐spacing below 1) the generation of perpendicular lamellae morphology through the whole film thickness, as shown by Grazing‐incidence small‐angle X‐ray scattering experiments (GISAXS) measurements. Functionalized BCP were successfully used in thin films as templates for silica nanoparticles in an in‐situ sol–gel process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
Two photosensitive chiral liquid crystalline azobenzene‐containing polymethacrylates having different length of flexible spacer connecting chromophores with backbone were synthesized and their phase behavior and photo‐optical properties were studied. Both polymers consist of lateral methyl substituents in ortho‐position of azobenzene chromophores providing high photosensitivity even in red spectral region as well as high thermal stability of photoinduced Z‐form of azobenzene chromophores. It is shown, that smectic phase (SmA*) formation in films of polymer with longer spacer predetermines its quite unusual spectral response to UV and subsequent visible light actions. The SmA* phase promotes spontaneous homeotropic alignment of azobenzene chromophores in polymer films. UV‐irradiation induces not only E‐Z isomerization but also results in disruption of homeotropic alignment, whereas subsequent visible light action enables to obtain films with the low degree of chromophores orientation. The photo‐orientation phenomena under the action of polarized light of different wavelength on polymer films were studied. The possibility of using red polarized light of moderate intensity for optical photorecording on polymer films is demonstrated. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2962–2970  相似文献   

16.
Poly(ethylene terephthalate) films with oriented lamellar structure were deformed in tensile experiments and investigated in situ using small angle X‐ray scattering. The tensile direction was set parallel, normal and in an angle of 45° relative to the surface normal of the lamellae. Data were interpreted in terms of two‐dimensional autocorrelation functions. The deformation of lattice spacing and lamellar orientation can largely be explained by affine transformations. The sample, where the lamellar surface normal was normal to tensile direction, developed a chequerboard type arrangement of crystalline parts. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 159–169  相似文献   

17.
A series of novel ultralow dielectric porous polyimide (PI) films containing adamantane groups was prepared via the thermolysis of polyethylene glycol (PEG) oligomers mixed into PI matrix. Scanning electron microscopy results indicated that the porous PI films showed closed pores with an average diameter of 120 ± 10 nm. Good thermal properties with 5% weight loss temperature of 499 °C in air atmosphere and glass transition temperature in excess of 310 °C were shown for porous PI films. Notably, the ultralow dielectric constant of porous PI films with 1.85 at 1 MHz was obtained and revealed via broadband dielectric spectroscopy. The effects of the chemical structure of the PI matrix and PEG content on the decomposition behavior of PEG and the performance of porous films were investigated. Wide‐angle X‐ray diffraction results indicated that the PI matrix with large d‐spacing generated weaker interactions between the PEG and PI backbone than those of PI matrix with small d‐spacing. As a result, the PEG for the PI matrix with large d‐spacing was completely decomposed. As indicated by the broadband dielectric spectroscopy results, lower dielectric porous PI films were prepared when the PEG contents in the PI matrix increased from 0 to 20 wt %. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 549–559  相似文献   

18.
The objective of the study is to formulate exclusive block copolymer (BCP) nanocomposites by dispersing bcp end‐grafted nanoparticles (bcp‐g‐nps) of PMMA‐b‐PS‐g‐TiO2 within PS‐b‐PMMA matrix. PMMA‐b‐PS‐g‐TiO2 is synthesized using a “grafting‐to” approach and characterized by XPS and TGA to establish that the copolymer chains were bonded to NPs. Good dispersion of bcp‐g‐nps in PMMA and PS‐PMMA bcp films is observed, in contrast to poor dispersion in PS films. In PS‐PMMA films, the compatible and identical bcp nature of the end‐grafted polymer, and large NP size caused it to span across entire PS‐PMMA domains. Poor and good dispersion in PS and PMMA matrices, respectively, can be rationalized by the fact that NPs interactions are driven by the PMMA at the outer corona of the bcp‐g‐nps. Developing bcp‐g‐nps as a strategic route to preparation of highly dispersed high permittivity NPs like titanium dioxide (TiO2) in bcp matrix can have important ramifications for energy storage devices. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 468–478  相似文献   

19.
Poly(amide acid) labeled with perylenetetracarboxydiimide (PEDI) was prepared from 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), p‐phenylenediamine (PDA), and diamino‐PEDI. Poly(amide acid) was then reacted with sodium hydride and various kinds of alkyl iodides for transformation into various poly(amide ester)s. The cast films were imidized while fixed on glass substrates to give BPDA/PDA polyimide films. The degree of in‐plane molecular orientation (f) of the polyimides and their precursors, poly(amide acid) and poly(amide ester)s, were determined via measurements of the visible dichroic absorption at an incidence angle for a rodlike dye (PEDI) bound to the main chain. All precursor films showed relatively low degrees of in‐plane orientation. After imidization of the precursors fixed on glasses, however, striking spontaneous in‐plane orientation behavior was observed. The f value for polyimide film from a poly(amide acid) precursor was as high as 0.7–0.8. The f value for polyimide film from a methyl ester precursor, however, was lowered to 0.4–0.5, but it increased with the increasing size of the alkyl groups. Good correlations of the in‐plane orientation of the polyimide films with the tensile modulus of the films and the in‐plane orientation of the graphitized films were observed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 3011–3019, 2001  相似文献   

20.
Reversible addition fragmentation transfer (RAFT) agent functionalized polydimethylsiloxane (PDMS‐RAFT) was used as a macro‐RAFT agent to polymerize a mixed sandwich cobaltocene containing monomer featuring η5‐cyclopentadienyl‐cobalt‐η4‐cyclobutadiene. High molecular weight block copolymers (BCP) consisting of a metallic block and a PDMS block with excellent control over molecular weight and polydispersity were prepared. Solid‐state self‐assembly of this BCP resulted in hexagonal domains of metallopolymer phase‐separated from PDMS. In solution, spherical micelles with a metallic core, stabilized by a PDMS corona were prepared. Pyrolysis of the BCP resulted in magnetic nanoparticles with 30% char yield. The BCP was used as an ink material for microcontact printing (μCP) to transfer long‐ranged patterns. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2747–2754  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号