首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Lithium hydride (LiH) has a strong effect on iron leading to an approximately 3 orders of magnitude increase in catalytic ammonia synthesis. The existence of lithium–iron ternary hydride species at the surface/interface of the catalyst were identified and characterized for the first time by gas-phase optical spectroscopy coupled with mass spectrometry and quantum chemical calculations. The ternary hydride species may serve as centers that readily activate and hydrogenate dinitrogen, forming Fe-(NH2)-Li and LiNH2 moieties—possibly through a redox reaction of dinitrogen and hydridic hydrogen (LiH) that is mediated by iron—showing distinct differences from ammonia formation mediated by conventional iron or ruthenium-based catalysts. Hydrogen-associated activation and conversion of dinitrogen are discussed.  相似文献   

2.
In this short review, we discuss recent examples of well-defined metal complexes capable to split dinitrogen electrochemically. Large progress has been made in the chemical dinitrogen splitting with molecular complexes during the last couple of years; however, electrochemical N2 splitting remains scarce. Herein, three distinct examples, which were investigated in depth, are discussed. The iron complex 2+ converts N2 to ammonia via an associative mechanism. With the rhenium pincer complex 3, N2 is cleaved via a dissociative mechanism forming a very stable ReV-nitride complex. The aluminium complex 6 also converts N2 electrochemically to ammonia; however, the mechanism is distinctly different to that in 2+ or 3, as there is no evidence for a metal–N2 interaction and likely the ligand acts as a hydride donor.  相似文献   

3.
Treatment of toluene or p‐xylene with diaminoboryllithium results in consecutive reactions, involving boryl‐anion‐mediated deprotonation at the benzylic position followed by nucleophilic substitution at the boron center, producing benzylborane species and LiH. Diaminoboryllithium also cleaves H2 heterolytically affording diaminohydroborane and LiH, while the reaction of lithium diaminoboryl(bromo)cuprate with H2 takes place accompanied by reduction of CuI to give diaminohydroborane, LiH, and Cu0.  相似文献   

4.
Bridging iron hydrides are proposed to form at the active site of MoFe‐nitrogenase during catalytic dinitrogen reduction to ammonia and may be key in the binding and activation of N2 via reductive elimination of H2. This possibility inspires the investigation of well‐defined molecular iron hydrides as precursors for catalytic N2‐to‐NH3 conversion. Herein, we describe the synthesis and characterization of new P2P′PhFe(N2)(H)x systems that are active for catalytic N2‐to‐NH3 conversion. Most interestingly, we show that the yields of ammonia can be significantly increased if the catalysis is performed in the presence of mercury lamp irradiation. Evidence is provided to suggest that photo‐elimination of H2 is one means by which the enhanced activity may arise.  相似文献   

5.
The zirconocene dinitrogen complex [{(η5‐C5Me4H)2Zr}2222‐N2)] was synthesized by photochemical reductive elimination from the corresponding zirconium bis(aryl) or aryl hydride complexes, providing a high‐yielding, alkali metal‐free route to strongly activated early‐metal N2 complexes. Mechanistic studies support the intermediacy of zirconocene arene complexes that in the absence of sufficient dinitrogen promote C? H activation or undergo comproportion to formally ZrIII complexes. When N2 is in excess arene displacement gives rise to strong dinitrogen activation.  相似文献   

6.
Understanding the coordination of dinitrogen to iron is important for understanding biological nitrogen fixation as well as for designing synthetic systems that are capable of reducing N2 to NH3 under mild conditions. This review discusses recent advances in iron–dinitrogen coordination complexes and describes the factors that contribute to the degree of activation of the coordinated N2. The reactivity of the N2 ligand is also reviewed, with an emphasis on protonation reactions that yield ammonia and/or hydrazine. Coordination complexes containing N2 reduction intermediates such as diazene (N2H2), hydrazido (N2H22?), hydrazine (N2H4), nitride (N3?), imide (NH2?), and amide (NH2?) are also discussed in the context of the mechanism of N2 reduction to NH3 mediated by iron coordination complexes.  相似文献   

7.
Mono‐iron hydrogenase ([Fe]‐hydrogenase) reversibly catalyzes the transfer of a hydride ion from H2 to methenyltetrahydromethanopterin (methenyl‐H4MPT+) to form methylene‐H4MPT. Its iron guanylylpyridinol (FeGP) cofactor plays a key role in H2 activation. Evidence is presented for O2 sensitivity of [Fe]‐hydrogenase under turnover conditions in the presence of reducing substrates, methylene‐H4MPT or methenyl‐H4MPT+/H2. Only then, H2O2 is generated, which decomposes the FeGP cofactor; as demonstrated by spectroscopic analyses and the crystal structure of the deactivated enzyme. O2 reduction to H2O2 requires a reductant, which can be a catalytic intermediate transiently formed during the [Fe]‐hydrogenase reaction. The most probable candidate is an iron hydride species; its presence has already been predicted by theoretical studies of the catalytic reaction. The findings support predictions because the same type of reduction reaction is described for ruthenium hydride complexes that hydrogenate polar compounds.  相似文献   

8.
We used density functional calculations to model dinitrogen reduction by a FeMo cofactor containing a central nitrogen atom and by a Mo‐based catalyst. Plausible intermediates, reaction pathways, and relative energetics in the enzymatic and catalytic reduction of N2 to ammonia at a single Mo center are explored. Calculations indicate that the binding of N2 to the Mo atom and the subsequent multiple proton–electron transfer to dinitrogen and its protonated species involved in the conversion of N2 are feasible energetically. In the reduction of N2 the Mo atom experiences a cycled oxidation state from Mo(IV) to Mo(VI) by nitrogenase and from Mo(III) to Mo(VI) by the molybdenum catalyst, respectively, tuning the gradual reduction of N2. Such a wide range of oxidation states exhibited by the Mo center is crucial for the gradual reduction process via successive proton–electron transfer. Present results suggest that the Mo atom in the N‐centered FeMo cofactor is a likely alternative active site for dinitrogen binding and reduction under mild conditions once there is an empty site available at the Mo site. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

9.
Studies on N2 activation and transformation by transition metal hydride complexes are of particular interest and importance. The synthesis and diverse transformations of a dinitrogen dititanium hydride complex bearing the rigid acridane‐based acriPNP‐pincer ligands {[(acriPNP)Ti]2(μ2η1:η2‐N2)(μ2‐H)2} are presented. This complex enabled N2 cleavage and hydrogenation even without additional H2 or other reducing agents. Furthermore, diverse transformations of the N2 unit with a variety of organometallic compounds such as ZnMe2, MgMe2, AlMe3, B(C6F5)3, PinBH, and PhSiH3 have been well established at the rigid acriPNP‐ligated dititanium framework, such as reversible bonding‐mode change between the end‐on and side‐on/end‐on fashions, diborylative N=N bond cleavage, the formal insertion of two dimethylaluminum species into the N=N bond, and the formal insertion of two silylene units into the N=N bond. This work has revealed many unprecedented aspects of dinitrogen reaction chemistry.  相似文献   

10.
Sunlight‐driven dinitrogen fixation can lead to a novel concept for the production of ammonia under mild conditions. However, the efficient artificial photosynthesis of ammonia from ordinary air (instead of high pure N2) has never been implemented. Here, we report for the first time the intrinsic catalytic activity of Bi2MoO6 catalyst for direct ammonia synthesis under light irradiation. The edge‐exposed coordinatively unsaturated Mo atoms in an Mo?O coordination polyhedron can act as activation centers to achieve the chemisorption, activation, and photoreduction of dinitrogen efficiently. Using that insight as a starting point, through rational structure and defect engineering, the optimized Bi2MoO6 sunlight‐driven nitrogen fixation system, which simultaneously possesses robust nitrogen activation ability, excellent light‐harvesting performance, and efficient charge transmission was successfully constructed. As a surprising achievement, this photocatalytic system demonstrated for the first time ultra‐efficient (1.3 mmol g?1 h?1) and stable sunlight‐driven nitrogen fixation from air in the absence of any organic scavengers.  相似文献   

11.
The Germanium (Ge), as a fast-charging and high specific capacity (1568 mAh g−1) alloy anode, is greatly hampered in practical application by poor cyclability. To date, the understanding of cycling performance degradation remains elusive. This study illustrates that, contrary to conventional beliefs, most of the Ge material in failed anodes still retains good integrity and does not undergo severe pulverization. It is revealed that capacity degradation is clearly correlated to the interfacial evolution of lithium hydride (LiH). Tetralithium germanium hydride (Li4Ge2H), as a new species derived from LiH, is identified as the culprit of Ge anode degradation, which is the dominant crystalized component in an ever-growing and ever-insulating interphase. The significantly increased thickness of the solid electrolyte interface (SEI) is accompanied by the accumulation of insulating Li4Ge2H upon cycling, which severely retards the charge transport process and ultimately triggers the anode failure. We believe that the comprehensive understanding of the failure mechanism presented in this study is of great significance to promoting the design and development of alloy anode for the next generation of lithium-ion batteries.  相似文献   

12.
Reaction of a trinuclear iron(II) complex, Fe3Br3 L ( 1 ), with KC8 under N2 leads to dinitrogen activation products ( 2 ) from which Fe3(NH)3 L ( 2‐1 ; L is a cyclophane bridged by three β‐diketiminate arms) was characterized by X‐ray crystallography. 1H NMR spectra of the protonolysis product of 2 synthesized under 14N2 and 15N2 confirm atmospheric N2 reduction, and ammonia is detected by the indophenol assay (yield ~30 %). IR and Mössbauer spectroscopy, and elemental analysis on 2 and 2‐1 as well as the tri(amido)triiron(II) 3 and tri(methoxo)triiron 4 congeners support our assignment of the reduction product as containing protonated N‐atom bridges.  相似文献   

13.
The adsorption of N2 on structurally well‐defined dealuminated HY zeolite‐supported iridium diethylene complexes was investigated. Iridium dinitrogen complexes formed when the sample was exposed to N2 in H2 at 298 K, as shown by infrared spectra recorded with isotopically labeled N2. Four supported species formed in various flowing gases: Ir(N2), Ir(N2)(N2), Ir(C2H5)(N2), and Ir(H)(N2). Their interconversions are summarized in a reaction network, showing, for example, that, in the presence of N2, Ir(N2) was the predominant dinitrogen species at temperatures of 273–373 K. Ir(CO)(N2) formed transiently in flowing CO, and in the presence of H2, rather stable iridium hydride complexes formed. Four structural models of each iridium complex bonded at the acidic sites of the zeolite were employed in a computational investigation, showing that the calculated vibrational frequencies agree well with experiment when full calculations are done at the level of density functional theory, independent of the size of the model of the zeolite.  相似文献   

14.
In this work, the hydrogen desorption and structural properties of the Li-Mg-N-H systems with different LiH/Mg(NH2)2 ratios are systemically investigated. The results indicate that the system with the LiH/Mg(NH2)2 ratio of 6/3 transforms into Li2NH and MgNH, and then, the mixture forms an unknown phase by a solid-solid reaction, which presumably is the ternary imide Li2Mg(NH)2; the system with the LiH/Mg(NH2)2 ratio of 8/3 transforms into 4Li2NH and Mg3N2 after releasing H2 at T < 400 degrees C; the system with the LiH/Mg(NH2)2 ratio of 12/3 transforms into 4Li3N and Mg3N2 after releasing H2 at T > 400 degrees C, where the LiMgN phase is formed by the reaction between Li3N and Mg3N2. The characteristics of the phase transformations and the thermal gas desorption behaviors in these Li-Mg-N-H systems could be reasonably explained by the ammonia mediated reaction model, irrespective of the difference in the LiH/Mg(NH2)2 ratios.  相似文献   

15.
The generation of ammonia from atmospheric nitrogen and water using sunlight is a preferable approach to obtaining ammonia as an energy carrier and potentially represents a new paradigm for achieving a low‐carbon and sustainable‐energy society. Herein, we report the selective conversion of dinitrogen into ammonia through plasmon‐induced charge separation by using a strontium titanate (SrTiO3) photoelectrode loaded with gold nanoparticles (Au‐NPs) and a zirconium/zirconium oxide (Zr/ZrOx) thin film. We observed the simultaneous stoichiometric production of ammonia and oxygen from nitrogen and water under visible‐light irradiation.  相似文献   

16.
The two‐coordinate [(CAAC)2Fe] complex [CAAC=cyclic (alkyl)(amino)carbene] binds dinitrogen at low temperature (T2 complex, [(CAAC)2Fe(N2)], was trapped by one‐electron reduction to its corresponding anion [(CAAC)2FeN2]? at low temperature. This complex was structurally characterized and features an activated dinitrogen unit which can be silylated at the β‐nitrogen atom. The redox‐linked complexes [(CAAC)2FeI][BArF4], [(CAAC)2Fe0], and [(CAAC)2Fe?IN2]? were all found to be active for the reduction of dinitrogen to ammonia upon treatment with KC8 and HBArF4?2 Et2O at ?95 °C [up to (3.4±1.0) equivalents of ammonia per Fe center]. The N2 reduction activity is highly temperature dependent, with significant N2 reduction to NH3 only occurring below ?78 °C. This reactivity profile tracks with the low temperatures needed for N2 binding and an otherwise unavailable electron‐transfer step to generate reactive [(CAAC)2FeN2]?.  相似文献   

17.
The alkylation of complexes 2 and 7 with Grignard reagents containing β‐hydrogen atoms is a process of considerable relevance for the understanding of C–H activation as well as C–C bond formation mediated by low‐valent iron species. Specifically, reaction of 2 with EtMgBr under an ethylene atmosphere affords the bis‐ethylene complex 1 which is an active precatalyst for prototype [2+2+2] cycloaddition reactions and a valuable probe for mechanistic studies. This aspect is illustrated by its conversion into the bis‐alkyne complex 6 as an unprecedented representation of a cycloaddition catalyst loaded with two substrates molecules. On the other hand, alkylation of 2 with 1 equivalent of cyclohexylmagnesium bromide furnished the unique iron alkyl species 11 with a 14‐electron count, which has no less than four β‐H atoms but is nevertheless stable at low temperature against β‐hydride elimination. In contrast, the exhaustive alkylation of 1 with cyclohexylmagnesium bromide triggers two consecutive C–H activation reactions mediated by a single iron center. The resulting complex has a diene dihydride character in solution ( 15 ), whereas its structure in the solid state is more consistent with an η3‐allyl iron hydride rendition featuring an additional agostic interaction ( 14 ). Finally, the preparation of the cyclopentadienyl iron complex 25 illustrates how an iron‐mediated C–H activation cascade can be coaxed to induce a stereoselective C? C bond formation. The structures of all relevant new iron complexes in the solid state are presented.  相似文献   

18.
The alkylation of complexes 2 and 7 with Grignard reagents containing β‐hydrogen atoms is a process of considerable relevance for the understanding of C–H activation as well as C–C bond formation mediated by low‐valent iron species. Specifically, reaction of 2 with EtMgBr under an ethylene atmosphere affords the bis‐ethylene complex 1 which is an active precatalyst for prototype [2+2+2] cycloaddition reactions and a valuable probe for mechanistic studies. This aspect is illustrated by its conversion into the bis‐alkyne complex 6 as an unprecedented representation of a cycloaddition catalyst loaded with two substrates molecules. On the other hand, alkylation of 2 with 1 equivalent of cyclohexylmagnesium bromide furnished the unique iron alkyl species 11 with a 14‐electron count, which has no less than four β‐H atoms but is nevertheless stable at low temperature against β‐hydride elimination. In contrast, the exhaustive alkylation of 1 with cyclohexylmagnesium bromide triggers two consecutive C–H activation reactions mediated by a single iron center. The resulting complex has a diene dihydride character in solution ( 15 ), whereas its structure in the solid state is more consistent with an η3‐allyl iron hydride rendition featuring an additional agostic interaction ( 14 ). Finally, the preparation of the cyclopentadienyl iron complex 25 illustrates how an iron‐mediated C–H activation cascade can be coaxed to induce a stereoselective C C bond formation. The structures of all relevant new iron complexes in the solid state are presented.  相似文献   

19.
The hydrogenation of carbon dioxide involves the activation of the thermodynamically very stable molecule CO2 and formation of a C−H bond. Herein, we report that HCO2 and CO can be formed in the thermal reaction of CO2 with a diatomic metal hydride species, FeH. The FeH anions were produced by laser ablation, and the reaction with CO2 was analyzed by mass spectrometry and quantum‐chemical calculations. Gas‐phase HCO2 was observed directly as a product, and its formation was predicted to proceed by facile hydride transfer. The mechanism of CO2 hydrogenation in this gas‐phase study parallels similar behavior of a condensed‐phase iron catalyst.  相似文献   

20.
About 20 % of the ammonia production is used as the chemical feedstock for nitrogen‐containing chemicals. However, while synthetic nitrogen fixation at ambient conditions has had some groundbreaking contributions in recent years, progress for the direct conversion of N2 into organic products remains limited and catalytic reactions are unknown. Herein, the rhenium‐mediated synthesis of acetonitrile using dinitrogen and ethyl triflate is presented. A synthetic cycle in three reaction steps with high individual isolated yields and recovery of the rhenium pincer starting complex is shown. The cycle comprises alkylation of a nitride that arises from N2 splitting and subsequent imido ligand centered oxidation to nitrile via a 1‐azavinylidene (ketimido) intermediate. Different synthetic strategies for intra‐ and intermolecular imido ligand oxidation and associated metal reduction were evaluated that rely on simple proton, electron, and hydrogen‐atom transfer steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号