首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive and selective spectrophotometric method has been developed for the determination of iron as Fe(II) or Fe(III) using 9,10-phenanthrenequinone monoxime (PQM) as the complexing agent. Fe(II) and Fe(III) react with PQM to form coloured water insoluble complexes which can be adsorbed on microcrystalline naphthalene in the pH ranges 3.7–6.2 and 2.0–8.4, respectively. The solid mass consisting of the metal complex and naphthalene is dissolved in DMF and the metal determined spectrophotometrically by measuring the absorbances Fe(II) at 745 nm and Fe(III) at 425 nm. Beer's law is obeyed over the concentration range 0.5–20.0 g of iron(II) and 20–170.0 g of Fe(III) in 10 ml of DMF solution. The molar absorptivities are 1.333 × 104 1 · mole–1 · cm–1 for Fe(II) and 2.428 × 1031· mole–1 · cm–1 for Fe(III). The precision of determination is better than 1%. The interference of various ions has been studied and the method has been employed for the determination of iron in various standard reference alloys, bears, wines, ferrous gluconate, human hair and environmental samples.  相似文献   

2.
Iron(III) complexes [Fe(H2Fo4pT)Cl3] (1), [Fe(H2Ac4pT)Cl3] (2) and [Fe(H2Bz4pT)Cl3] (3) with N4 -para-tolyl-thiosemicarbazones derived from 2-formyl (H2Fo4pT), 2-acetyl (H2Ac4pT) and 2-benzoylpyridine (H2Bz4pT) were prepared and characterized. EPR data for 1–3 reveal the presence of low-spin iron(III) with d xz ²d yz ²d xy ¹ ground state. Electrochemical studies of the complexes showed mostly metal-centered redox changes with a quasi-reversible Fe(III)/Fe(II) couple. H2Fo4pT and H2Ac4pT exhibited toxicity against Artemia salina at low doses (LD50 = 27.5 µM and LD50 = 4.7 µM, respectively). Upon coordination the toxicity increased substantially in the case of [Fe(H2Fo4pT)Cl3] (LD50 = 1.9 µM) and did not change for [Fe(H2Ac4pT)Cl3]. H2Bz4pT and its iron(III) complex were not soluble in water.  相似文献   

3.
Salicylaldehyde or 5-bromosalicylaldehyde react with 2,3-diaminophenol to give two unsymmetrical Schiff-bases H2L1, H2L2, respectively. With Fe(III) and Co(II), these ligands lead to four complexes: Fe(III)ClL1, Fe(III)ClL2, Co(II)L1, Co(II)L2. The structures of these complexes were determined by mass spectroscopy, infrared and electronic spectra. Cyclic voltammetry in dimethylformamide (DMF) showed irreversible waves for both ligands. In the same experimental conditions, Fe(III)ClL1 exhibited a reversible redox couple Fe(III)/Fe(II) while the three other complexes showed quasi-reversible systems. The behavior of some of these complexes in the presence of dioxygen and the comparison with cytochrome P450 are described.  相似文献   

4.
Preconcentration, speciation and separation with solvent extraction of Fe(III) from samples of different origin, using methyl isobutyl ketone (MIBK) as a solvent and the sodium salt of 2-carboethoxy-1,3-indandione (CEIDNa) as a complexing agent for Fe(III), were studied. CEIDNa reacts with Fe(III) in the pH range 1.5–3.5 to produce a red colored complex of Fe(III)–CEIDNa (1:3 molar ratio) soluble in MIBK. The investigation includes a study of the characteristics that are essential for solvent extraction, spectrophotometric and flame atomic absorption spectrometric determination (AAS) of iron. A highly sensitive, selective and rapid spectrometric method is described for the trace analysis of iron(III) by CEIDNa. The complex formed obeys Beer's law from 0.06 to 1.8 mg l−1 with an optimum range. A single step extraction was efficiently used with a distribution ratio (D)=103.6. The extracted red colored (1:3) Fe–CEIDNa was measured spectrophotometrically at 500 nm with a molar absorptivity of 1.2×104 l mol−1 cm−1. In addition, the organic phase was directly aspirated to the flame for AAS determination and the signals related to Fe(III) concentration were recorded at 243.3 nm. The complexation of iron(III) with CEIDNa allows the separation of the analyte from alkali, alkaline earth and other elements, which are not complexed. The proposed preconcentration procedure was applied successfully to the determination of trace Fe(III) in soil, milk and natural water samples.  相似文献   

5.

The electrochemical behavior of Co(creatinine)2Cl2 was investigated by cyclic voltammetry in organic solvents (DMSO and DMF) and in aqueous solution. Analysis of the results indicates that the electroactive species depend on the nature of the solvent. In DMF a single reduction process Co(II)/Co(I) is observed. In DMSO the redox behavior of the complex changes with the scan rate and a two-electron transfer process can be eventually observed. In aqueous solution the complex immediately decomposes giving rise to the aquo-cation. The characteristic peak of the redox couple Cl2/Cl? is observed as a consequence of the chloride released from the coordination sphere. Analysis of the electronic spectra gave additional support to the proposed mechanisms. The Co-Cl and Co-N stretching bands were clearly identified in the low frequency region of the IR spectrum.  相似文献   

6.
The polymerization of styrene initiated by 2,2′-azobisisobutyronitrile has been studied in N,N-dimethylformamide solution at 60°C in the presence of hexakis(N,N-dimethylformamide) iron(III) tetrafluoroborate alone, and also in the presence of added lithium chloride. The presence of Fe(DMF)63+ ions in the polymerizing systems caused retardation, but iron(III) chloro complexes produced well defined inhibition periods. Velocity constants at 60°C for polystyryl radicals towards Fe(DMF)63+, Fe(DMF)5Cl2+, Fe(DMF)4Cl2+, and FeCl4? ions were calculated to be 847, 4.15 × 104, 6.55 × 104, and 3.14 × 104 l./mole-sec, respectively. Values of the initiator efficiency f for most systems investigated ranged from 0.59 to 0.62.  相似文献   

7.
Electrochemical determination of cobalt. Part I. Studies of current—voltage curves of the cobalt(III)/cobalt(II) system in picolinic acid mediaAs a preliminary to the development of electrochemical determinations of cobalt in steels, current—voltage curves at a platinum electrode were studied for the systems coblt(III)/cobalt(II) and iron(III)/iron(II) in media containing picolinic acid as complexing agent. Iron(III) oxidizes cobalt(II) in this complexmg medium, and the iron-(II) formed can be determined by an oxidant such as cerium(IV).  相似文献   

8.
A novel amperometric nitrite sensor was developed based on the immobilization of hemoglobin/colloidal gold nanoparticles on a glassy carbon electrode by a titania sol-gel film. The sensor shows a pair of well-defined and nearly reversible cyclic voltammogram peaks for Hb Fe(III)/Fe(II) with a formal potential (E°) of –0.370 V, and the peak-to-peak separation at 100 mV s–1 was 66 mV vs. Ag/AgCl (3.0 M KCl) in a pH 6.9 phosphate buffer solution. The formal potential of the Hb Fe(III)/Fe(II) couple shifted linearly with pH with a slope of –50.0 mV/pH, indicating that electron transfer accompanies single-proton transportation. The sensor exhibited an excellent electrocatalytic response to the reduction of nitrite. The reduction overpotential was 0.45 V below that obtained at a colloidal gold nanoparticles/TiO2 sol-gel film-modified GCE. The linear range for nitrite determination for the sensor was 4.0×10–6 to 3.5×10–4 M, with a detection limit of 1.2×10–6 M. The stability, repeatability and selectivity of the sensor were also evaluated.  相似文献   

9.
The kinetics of the reaction between iron(II) and vanadium(V) have been investigated in the pH range 2.6–4.2 where decavanadates and VO2+ coexist in equilibrium. Under these conditions, the observed kinetic pattern is radically different from the one reported for the reaction in strong acid medium. In the pH range employed, the reaction rate is not appreciably altered by variation in the stoichiometric vanadium(V) concentration due to the operation of the equilibrium between the reactive species, VO2+, and the unreactive species, decavanadates. The reaction, however, obeys first‐order kinetics with respect to Fe(II). In the presence of salicylic acid, which imparts considerable reactivity to iron(II) by reducing the reduction potential of iron(III)/iron(II) couple by forming a stronger complex with iron(III) than iron(II), the kinetic results provide evidence for the participation of decavanadates in the electron transfer. The mechanism under both conditions is discussed. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 535–541, 2000  相似文献   

10.
Starting from their six-coordinate iron(II) precursor complexes [L8RFe(MeCN)]2+, a series of iron(III) complexes of the known macrocyclic tetracarbene ligand L8H and its new octamethylated derivative L8Me, both providing four imidazol-2-yliden donors, were synthesized. Several five- and six-coordinate iron(III) complexes with different axial ligands (Cl, OTf, MeCN) were structurally characterized by X-ray diffraction and analyzed in detail with respect to their spin state variations, using a bouquet of spectroscopic methods (NMR, UV/Vis, EPR, and 57Fe Mößbauer). Depending on the axial ligands, either low-spin (S=1/2) or intermediate-spin (S=3/2) states were observed, whereas high-spin (S=5/2) states were inaccessible because of the extremely strong in-plane σ-donor character of the macrocyclic tetracarbene ligands. These findings are reminiscent of the spin state patterns of topologically related ferric porphyrin complexes. The ring conformations and dynamics of the macrocyclic tetracarbene ligands in their iron(II), iron(III) and μ-oxo diiron(III) complexes were also studied.  相似文献   

11.
The complex species existing under voltammetric conditions (0.1 mol dm–3 LiCl) inDMF solutions of several iron(III) complexes with salicylaldehydeS-methylthiosemicarbazone (H2 L) have been identified by adding [FeCl4] and H+ and recording voltammograms at a glassy carbon electrode, both in stationary and rotating mode. By the action of Cl, a ligand release occurs, and the bis(ligand) cation [Fe(HL)2]+ is transformed into [Fe(HL)Cl3]. The same species is obtained in the reaction of [FeL 2] with [FeCl4]. Besides, the possibility has been demonstrated to obtain some complexes (and finally [FeCl4]) starting from a more basic type, by a careful addition of H+ generatedin situ from a Pd/H electrode. A practical application of the latter procedure could be the determination of the iron(III) content in such and similar compounds.
Die voltammetrische Identifizierung der Komplex-Spezies in DMF Lösungen von Eisen(III) Komplexen mit Salicylaldehyd-S-methylthiosemicarbazon
Zusammenfassung Die Spezies, die unter voltammetrischen Bedingungen (0.1 mol dm–3 LiCl) inDMF Lösungen einiger Eisen(III)-Komplexe mit Salizylaldehyd-S-methylthiosemicarbazon (H2 L) vorhanden sind, wurden durch Zusatz von [FeCl4] und H+ und Aufnahme von Voltammogrammen an der stationären und rotierenden Glaskohlenstoffelektrode identifiziert. Unter der Wirkung von Cl-Ionen kommt es zu einem Ligandenaustausch, wobei das bis(Ligand)-Kation [Fe(HL)2]+ in [Fe(HL)Cl3] übergeht. Die gleiche Substanz erhält man bei der Reaktion von [FeL 2] mit [FeCl4]. Ferner wird die Möglichkeit der Gewinnung einiger Komplexe (schließlich von [FeCl4]) ausgehend von der basischen Form durch stufenweise Zugabe von H+-Ionen, diein situ mit Hilfe einer Pd/H-Elektrode gebildet werden, beschrieben. Eine praktische Anwendung des letztgenannten Prozesses wäre die Bestimmung des Gehalts von Fe(III) in Lösungen der genannten und ähnlichen Komplexverbindungen.
  相似文献   

12.
Summary A method for the determination of U in the presence of Pu based on the reduction of U to U(IV) and Pu to Pu(III) by zinc amalgam followed by oxidimetry of U(IV) has been developed. Fe(III) perchlorate was chosen as the most suitable titrant for the selective oxidation of U(IV) as conventional oxidising titrants fail in the presence of Pu(III). The potentiometric titration of U(IV) with Fe(III) is known to be slow. This problem, however, has been overcome by selecting a suitable buffer medium and complexing agent to alter the potentials of the Fe(III)/Fe(II) and U(VI)/U(IV) systems in the favourable direction. Results of the titration of U(IV) with Fe(III) at pH 2 in the presence of ferrozine as complexing agent for Fe(II) are summarized. R.S.D. obtained for twenty determinations of 3–5 mg of U was 0.3 % in the presence of 1–4 mg of Pu.
Volumetrische Bestimmung von Uran in einem U/Pu-Gemisch mit Hilfe von Fe(III)
Zusammenfassung Das Verfahren beruht auf der Reduktion von U zu U(IV) und Pu zu Pu(III) mit Hilfe von Zinkamalgam und anschließender Titration mit Fe(III)-perchlorat. Dieses Reagens hat sich für die selektive Oxidation des U(IV) am besten bewährt, da andere Oxidationsmittel in Gegenwart von Pu(III) versagen. Die Endpunktsindikation erfolgt potentiometrisch, wobei die an sich langsame Einstellung des Endpunktes dadurch beschleunigt wird, daß durch Zusatz eines geeigneten Puffers und eines Komplexierungsmittels (Ferrozin) für Fe(II) die Redoxpotentiale von Fe(III)/Fe(II) und U(VI)/U(IV) entsprechend verschoben werden. Die relative Standardabweichung für die Bestimmung von 3–5 mg U in Gegenwart von 1–4 mg Pu liegt bei 0,3%.
  相似文献   

13.
The state of the new antitubercular agent 1,5-bis(amidomethylsulfonyl)pentane in aqueous micellar solution of the nonionic surfactant Bridge 35 and its complexing properties toward copper(II) and iron(III) ions have been studied by spectrophotometry, pH potentiometry (25°C, variable ionic strength), and mathematical modeling. In the concentration range from 5.00 × 10–5 to 1.00 × 10–3 M in the presence of Bridge 35, the title compound exists in a neutral monomeric form. It forms 1: 2 mononuclear and 2: 2 binuclear complexes with copper(II) and 1: 1 and 1: 2 mononuclear and 2: 1 binuclear complexes with iron(III). The most favorable structures of 1,5-bis(amidomethylsulfonyl)pentane and its complexes have been simulated in terms of the density functional theory.  相似文献   

14.
15.
《Polyhedron》1999,18(8-9):1317-1322
The controlled nucleophilic halide displacement reaction of [NEt4][Fe(bpc)Cl2] [H2bpc=4,5-dichloro-1,2-bis(pyridine-2-carboxamido) benzene] with AgClO4 in MeCN afforded a crystalline iron(III) complex Fe(bpc)Cl·H2O 1. The mixed chloro-dimethylformamide (DMF) axially ligated complex [Fe(bpc)Cl(DMF)] (obtained during recrystallization of 1 from DMF; however, it loses DMF quite readily to revert back to 1) has been structurally characterized. It belongs to only a handful of mononuclear high-spin iron(III) complexes having deprotonated picolinamide ligand. The iron(III) centre is co-ordinated in the equatorial plane by two pyridine nitrogens and two deprotonated amide nitrogens of the ligand, and two axial sites are co-ordinated by a chloride ion and a DMF molecule. The metal atom has a distorted octahedral geometry. Reaction of 1 with [nBu4N][OH] in MeOH afforded a μ-oxo-bridged diiron(III) complex, [Fe(bpc)]2O·DMF·2H2O, 2. The spin state and the co-ordination environment of the iron(III) centres in 1 and 2 have been determined by temperature-dependent (25–300 K) magnetic susceptibility measurements in the solid state (Faraday method) and Mössbauer spectral studies at 300 K. Complex 1 behaves as a perfect S=5/2 system, in the solid-state as well as in DMF solution. The two iron(III) centres in 2 are antiferromagnetically coupled (J=−117.8 cm−1) and the bridged dimeric structure is retained in DMF solution. Bridge-cleavage reactions of 2 have been demonstrated by its ready reaction with mineral acids such as HCl and MeCO2H to generate authentic S=5/2 complexes, [Fe(bpc)Cl2] and [Fe(bpc)(O2CMe)2], respectively.  相似文献   

16.
A new pyridine-2,6-dicarboxylate iron(III)/iron(II) complex [Fe(phen)3][Fe2(PDC)4]·3CH3OH was synthesized and characterized (where PDC = pyridine-2,6-dicarboxylate, phen = 1,10-phenanthroline) by using elemental analysis, IR spectroscopy and thermal analyses (TGA and DTA). The molecular structure of the complex has been determined by single-crystal X-ray diffraction. The complex is mixed-ligands and the IR spectra display bands characteristic of coordinated mixed-ligand bases. All the IR results are in agreement with the X-ray crystal result. The bond lengths indicate that this complex has [Fe(phen)3]2+ cation where Fe(II) ion is in typical low-spin state, and in counter ions, [Fe(PDC)2] are both in high-spin state.  相似文献   

17.
18.
Novel complexing processes in the FeII-8-mercaptoquinoline, FeII-5-chloro-8-mercaptoquinoline and FeII-5-bromo-8-mercaptoquinoline systems, not used previously in coordination chemistry, namely complexing as an iron(III)hexacyanoferrate(II) gelatin-immobilized matrix (GIM) in contact with an aqueous solution of the corresponding ligand, have been observed and analysed. Incorporation of these ligands into the inner coordination sphere is preceded by the decomposition of the immobilized compound KFe[Fe(CN)6] to form hydroxides or oxohydroxides of FeII and FeIII under the action of OH- ions. It has been shown that FeIIFeIII redox process and the formation of FeB3 chelates (B- is a singly deprotonated form of the corresponding ligand) take place during complexing under such conditions.  相似文献   

19.
A mononuclear iron(III) complex with 2,6-bis(3,4,5-trimethyl-N-pyrazolyl)pyridine (btmpp) has been synthesized, and characterized by X-ray crystallography, IR, UV–Vis and TGA–DTA methods. The Fe(III/II) couple was characterized by way of cyclic voltammetry using DMF solvent, where the complex was observed to have an irreversible behaviour.  相似文献   

20.
In this paper a carbon ionic liquid electrode (CILE) was fabricated by using a room temperature ionic liquid of 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) as binder. By using the CILE as basal electrode, the hemoglobin (Hb) molecule was immobilized on the surface of CILE with a sodium alginate (SA) hydrogel and SiO2 nanoparticles organic-inorganic composite material. The direct electrochemical behaviors of Hb in the bionanocomposite film were further studied in a pH 7.0 Britton-Robinson (B-R) buffer solution. A pair of well-defined quasi-reversible cyclic voltammetric peaks of Hb was obtained on SA/nano-SiO2/Hb/CILE with the formal potential (E0’) at -0.355 V (vs. SCE), which was the characteristic of heme Fe(III)/Fe(II) redox couples. The formal potential of Hb Fe(III)/Fe(II) couple shifted negatively with increasing pH of solution with a slope of -45.2 mV/pH, which indicated that a one electron transfer accompanied with one proton transportation. The immobilized Hb showed good electrocatalytic manner to the reduction of trichloroacetic acid (TCA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号