首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 467 毫秒
1.
Ab initio calculations at second-order Møller-Plesset perturbation theory with the 6-31 + G(d,p) basis set have been performed to determine the equilibrium structures and energies of a series of negative-ion hydrogen-bonded complexes with H2O, H2S, HCN, and HCl as proton donors and OH, SH, CN, and Cl as proton acceptors. The computed stabilization enthalpies of these complexes are in agreement to within the experimental error of 1 kcal mol–1 with the gas-phase hydrogen bond enthalpies, except for HOHOH, in which case the difference is 1.8 kcal mol–1. The structures of these complexes exhibit linear hydrogen bonds and directed lone pairs of electrons except for complexes with H2O as the proton donor, in which cases the hydrogen bonds deviate slightly from linearity. All of the complexes have equilibrium structures in which the hydrogen-bonded proton is nonsymmetrically bound, although the symmetric structures of HOHOH and ClHCl are only slightly less bound than the equilibrium structures. MP2/6-31 + G(d,p) hydrogen bond energies calculated at optimized MP2/B-31 + G(d,p) and at optimized HF/6-31G(d) geometries are similar. Using HF/6-31G(d) frequencies to evaluate zero-point and thermal vibrational energies does not introduce significant error into the computed hydrogen bond enthalpies of these complexes provided that the hydrogen-bonded proton is definitely nonsymmetrically bound at both Hartree-Fock and MP2.  相似文献   

2.
Density functional B3LYP method with 6-31++G** basis set is applied to optimize the geometries of the luteolin, water and luteolin–(H2O)n complexes. The vibrational frequencies are also studied at the same level to analyze these complexes. We obtained four steady luteolin–H2O, nine steady luteolin–(H2O)2 and ten steady luteolin–(H2O)3, respectively. Theories of atoms in molecules (AIM) and natural bond orbital (NBO) are used to investigate the hydrogen bonds involved in all the systems. The interaction energies of all the complexes corrected by basis set superposition error, are within −13.7 to −82.5 kJ/mol. The strong hydrogen bonding mainly contribute to the interaction energies, Natural bond orbital analysis is performed to reveal the origin of the interaction. All calculations also indicate that there are strong hydrogen bonding interactions in luteolin–(H2O)n complexes. The OH stretching modes of complexes are red-shifted relative to those of the monomer.  相似文献   

3.
The equilibrium structures, binding energies, and vibrational spectra of the clusters CH3F(HF)1 n 3 and CH2F2(HF)1 n 3 have been investigated with the aid of large-scale ab initio calculations performed at the Møller–Plesset second-order level. In all complexes, a strong C–FH–F halogen–hydrogen bond is formed. For the cases n = 2 and n = 3, blue-shifting C–HF–H hydrogen bonds are formed additionally. Blue shifts are, however, encountered for all C–H stretching vibrations of the fluoromethanes in all complexes, whether they take part in a hydrogen bond or not, in particular also for n = 1. For the case n = 3, blue shifts of the ν(C–H) stretching vibrational modes larger than 50 cm−1 are predicted. As with the previously treated case of CHF3(HF)1 n 3 complexes (A. Karpfen, E. S. Kryachko, J. Phys. Chem. A 107 (2003) 9724), the typical blue-shifting properties are to a large degree determined by the presence of a strong C–FH–F halogen–hydrogen bond. Therefore, the term blue-shifted appears more appropriate for this class of complexes. Stretching the C–F bond of a fluoromethane by forming a halogen–hydrogen bond causes a shortening of all C–H bonds. The shortening of the C–H bonds is proportional to the stretching of the C–F bond.  相似文献   

4.
Various properties of typical structures of water clusters in the n = 2–34 size regime with the change of cluster size have been systematically explored. Full optimizations are carried out for the structures presented in this article at the Hartree–Fock (HF) level using the 6‐31G(d) basis set by taking into account the positions of all atoms within the cluster. The influence of the HF level on the results has been reflected by the comparison between the binding energies of (H2O)n (n = 2–6, 8, 11, 13, 20) calculated at the HF level and those obtained from high‐level ab initio calculations at the second‐order Møller–Plesset (MP2) perturbation theory and the coupled cluster method including singles and doubles with perturbative triples (CCSD(T)) levels. HF is inaccurate when compared with MP2 and CCSD(T), but it is more practical and allows us to study larger systems. The computed properties characterizing water clusters (H2O)n (n = 2–34) include optimal structures, structural parameters, binding energies, hydrogen bonds, charge distributions, dipole moments, and so on. When the cluster size increases, trends of the above various properties have been presented to provide important reference for understanding and describing the nature of the hydrogen bond. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

5.
Ab initio calculations are used to provide information on H3N???XY???HF triads (X, Y=F, Cl, Br) each having a halogen bond and a hydrogen bond. The investigated triads include H3N???Br2‐HF, H3N???Cl2???HF, H3N???BrCI???HF, H3N???BrF???HF, and H3N???ClF???HF. To understand the properties of the systems better, the corresponding dyads are also investigated. Molecular geometries, binding energies, and infrared spectra of monomers, dyads, and triads are studied at the MP2 level of theory with the 6‐311++G(d,p) basis set. Because the primary aim of this study is to examine cooperative effects, particular attention is given to parameters such as cooperative energies, many‐body interaction energies, and cooperativity factors. The cooperative energy ranges from ?1.45 to ?4.64 kcal mol?1, the three‐body interaction energy from ?2.17 to ?6.71 kcal mol?1, and the cooperativity factor from 1.27 to 4.35. These results indicate significant cooperativity between the halogen and hydrogen bonds in these complexes. This cooperativity is much greater than that between hydrogen bonds. The effect of a halogen bond on a hydrogen bond is more pronounced than that of a hydrogen bond on a halogen bond.  相似文献   

6.
The Huzinaga MINI-1 minimal basis set was applied to the following complexes: H3N...HF, H2O...HF, (HF)2, (H2O)2, HCN...HF, OCO...HF, HF...HNH2, (HCl)2, CH4...OH2 and (H3Si)2O...H2O. The optimized geometries and stabilization energies agree well with the 6–31G* values, while the computing time is reduced considerably. The MINI-1 basis set was further tested for the stacking structure of the ethylene dimer and the cyclic structure of the formamide...formamidine complex, where fair agreement with the 4–31G results was obtained. The normal vibrational frequencies calculated for some complexes are comparable to those evaluated at the 4–31G (6–31G) level.  相似文献   

7.
The structures and energies of axial and equatorial conformers and rotamers of 4-substituted tetrahydro-2H-thiopyran-1,1-dioxides (tetrahydrothiopyran-1,1-dioxides, thiacyclohexane-1,1-dioxides, thiane-1,1-dioxides, and 1,1-dioxothianes; CH3, CH2OH, CHO, COCH3, CN, F, Cl, Br, and OCOCH3) were calculated using the hybrid density functionals B3LYP, B3P86, and B3PW91, as well as MP2 and the 6-31G(d), 6-31G(2d), 6-31G(3d), 6-31G(d,p), and 6-31+G(d) basis sets. MP2/6-31+G(d)/ /HF/6-31+G(d) [–G° = 1.73 kcal/mol], B3P86/6-31G(d) [–G° = 1.75 kcal/mol], and B3PW91/6-31G(d) [–G° = 1.85 kcal/mol] gave conformational free energy (G°) values at 180 K for 4-methyltetrahydro-2H-thiopyran-1,1-dioxide which were similar to the reported experimental values for methylcyclohexane (–G° = 1.80 kcal/mol), 4-methyltetrahydro-2H-thiopyran (–G° = 1.80 kcal/mol), and other 4-methyl-substituted heterocycles. All levels of theory showed that the conformational preferences of the 4-methanoyl (4-formyl), 4-ethanoyl (4-acetyl), and 4-cyano substituents were small. The HF calculations gave conformational free energy (G°) values for 4-chlorotetrahydro-2H-thiopyran-1,1dioxide which were closer to the experimental value than the MP2 and density functional methods. The best agreement with available experimental data for 4-bromotetrahydro-2H-thiopyran-1,1-dioxide was obtained from the HF/6-31G(2d), HF/6-31G(3d), and B3LYP/6-31G(2d) calculations, and, for 4-acetoxytetrahydro-2H-thiopyran-1,1-dioxide, from the HF/6–31G(3d) calculations. The conformational free energies (G°) and relative energies (E) of the conformers and rotamers have been compared with the correspondingly substituted cyclohexanes and tetrahydro-2H-thiopyrans and are discussed in terms of dipole–dipole (electrostatic) interactions and repulsive nonbonded interactions (steric) in the most stable axial and equatorial conformers. The axial S=O bond lengths are shorter than the equatorial S=O bond lengths and the C2–C3 bond lengths in the substituents with carbon-bonded to the ring are shorter than the C3–C4 and C4–C-5 bond lengths. In contrast, the C2–C3 bond lengths in the 4-halogen and 4-acetoxy substituents are longer than the C3–C4 and C4–C-5 bond lengths.  相似文献   

8.
The behaviour of the Cobalt(III)–nta (nta = nitrilotriacetate) system in an acidic medium was investigated. The acid dissociation constant, pK a1, of [(nta)(H2O)Co(-OH)Co(H2O)(nta)] was determined as 3.09(3) and the pK a of the cis-[Co(nta)(H2O)2]/[Co(nta)(H2O)(OH)] equilibrium was determined as 6.71(1). cis-[Co(nta)(H2O)2] undergoes ring-opening upon acidification below pH = 2.0. The formation of [Co( 3-nta)(H2O)3]+ was also studied. The substitutions between cis-[Co(nta)(H2O)2] and NCS ions were investigated in the pH = 2–7 ranges. [Co(nta) (H2O)(OH)] reacts ca. 70 times faster at 24.7 °C with NCS ions than cis-[Co(nta)(H2O)2], indicating a cis-labilising effect of the OH ligand.  相似文献   

9.
We report the basis set dependencies and the basis set superposition errors for the hydrated complexes of K+ and Na+ ions in relation to the recent studies of the KcsA potassium channel. The basis set superposition errors are estimated by the geometry optimizations at the counterpoise-corrected B3LYP level. The counterpoise optimizations alter the hydration distances by about 0.02–0.03 Å. The enthalpies and free energies for K+ + n(H2O) → [K(H2O)n]+ and Na+ + n(H2O) → [Na(H2O)n]+ (n = 1–6) are compared between the theoretical and experimental values. The results show that the addition of diffuse functions to K, Na, and O species are effective. However, it is also found that the counterpoise corrections using diffuse functions work so as to underestimate the free energies for the complexes with increasing the hydration number. The stabilization energies in aqueous solution are larger for a Na+ ion than for a K+ ion, suggesting the contributions of their dehydration processes to the ion selectivity of the KcsA potassium channel. The changes in coordination distance between the isolated [K(H2O)8]+ and the [K(H2O)8]+ in the KcsA potassium channel indicate the importance of hydrogen bondings between the first hydration shell and the outer hydration shells.  相似文献   

10.
The infrared (3200–30 cm–1) spectra of gaseous and solid Cyclopropyldifluorosilane, c-C3H5SiF2H, and the Raman spectra (3200–20 cm–1) of the liquid with quantitative depolarization values and the solid have been recorded. Both the syn (cis) and skew (gauche) conformers have been identified in the fluid phases, but only the syn conformer remains in the solid. Variable temperature (–55 to –100°C) studies of the infrared spectra of the sample dissolved in liquid xenon have been carried out. From these data, the enthalpy difference has been determined to be 73 ± 10 cm–1 (209 ± 29 cal mol–1), with the syn conformer being the more stable rotamer, which is at variance with the predictions from ab initio calculations. A complete vibrational assignment is proposed for both conformers based on infared band contours, relative intensities, depolarization values, and group frequencies. The vibrational assignments are supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G* calculations. Utilizing the frequencies of the silicon–hydrogen sketch, the rm Si—H bond distances of 1.474 and 1.472 Å have been obtained for the syn and skew conformers, respectively. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing the 6-31G* and 6-311 +G** basis sets at levels of restricted Hartree-Fock (RHF) and/or Moller–Plesset (MP) to second order. The potential energy terms for the conformer interconversion have been obtained from the MP2/6-31G* calculation. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

11.
The energy surface of the dihydrated fluoride anion (F·2H2O)–1 is studied for a number of different geometry points near the equilibrium structure within the SCF LCAO MO framework, using an extended gaussian basis set to approximate the molecular wavefunctions. For the first and second hydration step of the fluoride anion the corresponding hydration energies are calculated to beB 1 scf =24.1 kcal/mole andB 2 SCF =20.8 kcal/mole (experimental measurements: 23.3 kcal/mole and 16.6 kcal/mole, respectively). The hydration energies and equilibrium bond distances obtained for the dihydrated fluoride anion (F·2H2O) are compared with those found for the monohydrate (FHOH) and with corresponding results of the dihydrated lithium cation (Li · 2H2O)+. The system (F·2H2O) is taken as a very simple model to discuss some basic features of the hydration process of small ions and to study the influence of a negative ion on an adjacent hydrogen bond.We would like to thank our technical staff for valuable help in carrying out these calculations.  相似文献   

12.
The electronic structure and stability of pyrrolyl are investigated using CASSCF, CASPT2 and G2(MP2) techniques. The ground state of pyrrolyl is found to be 2A2, with five π-electrons, as in cyclopentadienyl. The computed N–H bond energy of pyrrole is 94.8 kcal mol−1, while the heat of formation ΔfH298o of pyrrolyl is deduced to be 70.5±1 kcal mol−1. The Arrhenius parameters of N–H and C–H bond fission in pyrrole and cyclopentadiene and hydrogen abstraction reactions (by hydrogen) were also computed, indicating that pyrrolyl forms predominantly by C–H bond fission of pyrrolenine rather than by direct N–H bond fission.  相似文献   

13.
Uracil–(H2O)n (n = 1–7) clusters were systemically investigated by ab initio methods and the newly constructed ABEEMσπ/MM fluctuating charge model. Water molecules have been gradually placed in an average plane containing uracil. The geometries of 38 uracil–water complexes were obtained using B3LYP/6-311++G** level optimizations, and the energies were determined at the MP2/6-311++G** level with BSSE corrections. The ABEEMσπ/MM potential model gives reasonable properties of these clusters when comparing with the present ab initio data. For interaction energies, the root mean square deviation is 0.96 kcal/mol, and the linear coefficient reaches 0.997. Furthermore, the ABEEMσπ charges changed when H2O interacted with the uracil molecule, especially at the sites where the hydrogen bond form. These results show that the ABEEMσπ/MM model is fine giving the overall characteristic hydration properties of uracil–water systems in good agreement with the high-level ab initio calculations.  相似文献   

14.
A new type of hydrogen bond, called a dihydrogen bond, has recently been introduced. In this bond hydrogen is donated to (hydridic) hydrogen. In this paper, ab initio HF, MP2 and DFT(B3LYP) levels of theory with different basis sets in combination with counterpoise procedure for basis set superposition error correction have been applied to BH3NH3 dimer and BH3NH3 complexes of methane, hydrogen cyanide, ammonia, water, methanol and hydrogen fluoride to understand the features of dihydrogen bond. The optimized geometric parameters and interaction energies for various isomers at different levels are estimated. The structures obtained at different computational levels are in agreement with each other. Dihydrogen bond does not occur in both BH3NH3⋯CH4 and BH3NH3⋯NH3 complexes. Apart from the B–H⋯H–N dihydrogen bond found in the BH3NH3 crystal and dimmer, the B–H⋯H–X (XC, O, F) dihydrogen bonds have been observed in the BH3NH3⋯HCN, BH3NH3⋯H2O, BH3NH3⋯CH3OH and BH3NH3⋯HF complexes, while the classic H bonds also exist in the last three complexes. As for the complexes in which only dihydrogen bonds appear the strength of dihydrogen bonds ranges from 17.9 to 18.9 kJ mol−1 at B3LYP/6-311++g(d,p) level. Binding energies obtained from the MP2 and B3LYP optimized structures are more sensitive to basis sets than those from the HF method. Larger basis functions generally tend to produce slightly longer intermolecular distances, and the B3LYP and MP2 methods generate shorter intermolecular distances though they usually produce longer bond lengths compared with those at the HF level. The infrared spectrum frequencies, IR intensities and the vibrational frequency shifts are reported. Finally the solution phase studies on BH3NH3⋯HF complex are also carried out using the Onsager reaction field model with a range of dielectric constants from 2 to 80 at B3LYP/6-311++g(d,p) level.  相似文献   

15.
The hydration of the carboxylate group in the acetate anion has been investigated by performingab initio molecular orbital calculations on selected conformers of complexes with the form CH3CO2 ·nH2mH2O, wheren andm denote the number of water molecules in the first and second hydration spheres around the carboxylate group, andn + m 7. The results of RHF/6–31G* optimizations for all the complexes and MP2/6–31+G** optimizations for several one-water complexes are reported. The primary consequence of hydration on the structure of the acetate anion is a decrease in the length of the C-C bond. Enthalpy and free energy changes calculated at the MP2/6–31+G** and MP2/6–311+ +G** levels are reported for the reactions CH3CO2 + [H2O] P CH3CO2 ·nH2O ·mH2O where [H2O] P is a water cluster containingp water molecules andp=n+m 7. The calculations show that conformers with the lowest enthalpy change on complex formation are often not those with the lowest free energy change, due to a greater entropic loss in complexes with tighter and more favorable enthalpic interactions. Hydrogen bonding of six water molecules directly to the carboxylate group in CH3CO2 is found to account for approximately 40% of the enthalpy change and 37% of the free energy change associated with bulk solvation.  相似文献   

16.
Absolute bond dissociation energies of water to sodium glycine cations and glycine to hydrated sodium cations are determined experimentally by competitive collision-induced dissociation (CID) of Na+Gly(H2O)x, x = 1–4, with xenon in a guided ion beam tandem mass spectrometer. The cross sections for CID are analyzed to account for unimolecular decay rates, internal energy of reactant ions, multiple ion–molecule collisions, and competition between reaction channels. Experimental results show that the binding energies of water and glycine to the complexes decrease monotonically with increasing number of water molecules. Ab initio calculations at four different levels show good agreement with the experimental bond energies of water to Na+Gly(H2O)x, x = 0–3, and glycine to Na+(H2O), whereas the bond energies of glycine to Na+(H2O)x, x = 2–4, are systematically higher than the experimental values. These discrepancies may provide some evidence that these Na+Gly(H2O)x complexes are trapped in excited state conformers. Both experimental and theoretical results indicate that the sodiated glycine complexes are in their nonzwitterionic forms when solvated by up to four water molecules. The primary binding site for Na+ changes from chelation at the amino nitrogen and carbonyl oxygen of glycine for x = 0 and 1 to binding at the C terminus of glycine for x = 2–4. The present characterization of the structures upon sequential hydration indicates that the stability of the zwitterionic form of amino acids in solution is a consequence of being able to solvate all charge centers.  相似文献   

17.
Two new chromium(III)–nicotinate complexes, cis-[Cr(C2O4)2(O-nic)(H2O)] and cis-[Cr(C2O4)2(N-nic)(H2O)], were obtained and characterized in solution (where O-nic=O-bonded and N-nic=N-bonded nicotinic acid). The kinetics of nicotinate ligand liberation were studied spectrophotometrically in the 0.1–1.0 m HClO4 range, at I=1.0 m. The rate equations were determined and a mechanism is proposed. The rate of Cr–O bond breaking is [H+] dependent: kobs=kHQH[H+], where kH is the acid-catalyzed rate constant and QH is the protonation constant of the nonbonded oxygen atom in the O-coordinated ligand. The Cr–N bond breaking proceeds via two paths: spontaneous and acid-catalyzed; kobs=k0 + kHQH[H+], where k0 and kH are the spontaneous and acid catalyzed rate constants and QH is the protonation constant of the carboxylic group in the N-bonded nicotinic acid. The results demonstrate by comparison that Cr–N bond breaking is a much slower process than Cr–O bond fission.  相似文献   

18.
The equilibrium geometric parameters and structures of the transition states of internal rotation for MeP(O)(CN)2, McOP(CN)2, and their isocyano analogs, MeP(O)(NC)2 and MeOP(NC)2, have been calculated by theab initio SCF method and with inclusion of electron correlation effects according to the second-order Muuller-Plesset perturbation theory (MP2). At both levels the 6-31G* basis set has been used. The estimation of relative stability of these tautomeric forms depends largely on the calculation level. The total energies of the cyanides calculated by the MP2 method are 25–30 kcal mol–1 lower than those of the corresponding isocyanides. The oxo-tautomeric forms containing four-coordinate phosphorus are 15–25 kcal mol–1 more stable than the three-coordinate phosphorus aci-derivatives. The internal rotation potential curves of the aci-forms are characterized by a deep minimum for thetrans-arrangement of the methoxy group and phosphorus lone electron pair. Two additional less clearly pronounced minima are located symmetrically on both sides of the weak maximum, which corresponds to thecis-arrangement. The equilibrium oxo-form structures have a staggered configuration of the methyl group with respect to the phosphorus atom bonds.Translated from izvestiyaAkademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1104–1115, May, 1996.  相似文献   

19.
The infrared and Raman spectra were recorded in the range 4000–160 cm–1 forM(BF4)2·6 H2O whereM=Fe2+, Co2+, Ni2+. The spectroscopic data support the X-ray structural data in showing that in the crystal hydrates studied two kinds of hydrogen bonds are present: H2O...H2O and OH2... F4B. The energies and molecular force constants (f OH and fH2O) andr OH for OH2...F4B were calculated for the three crystal hydrates. It was found that the bond OH2... F4B is comparatively weak, with mean energy 3.7–3.3 kcal/mol. Two types of water molecule with different structures are existing as the first are participating in H2O...H–O–H...F4B and the second in BF4 ...H–O–H...F4B.  相似文献   

20.
Raman and infrared line parameters of Zn(NO3)2-H2O systems ranging from dilute solutions (25°C) to ionic liquids of low water content (75°C) are reported. At 25°C the solutions contain a very low concentration of inner sphere [Zn(ONO2)(H2O)5]+, outer sphere [Zn(H2O)6]2+[NO3], Zn(H2O) 6 2+ , and NO 3 (aq.). In the ionic liquids the ion triplet also exists. Manifestations of a change from the octahedral coordination of zinc to tetrahedral coordination when the water content is very low include the appearance of a 285 cm–1 band from the zinc nitrate bond and a shift to higher frequencies of the band from zinc-water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号