首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 145 毫秒
1.
Fluoroalkyl end‐capped acrylic acid oligomer [RF‐(ACA)n‐RF] reacted with tetraethoxysilane and silica nanoparticles in the presence of low molecular weight aromatic compounds [ Ar‐H ] such as cetylpyridinium chloride (CPC) and bisphenol AF under alkaline conditions to afford RF‐(ACA)n‐RF/SiO2 nanocomposites‐encapsulated Ar‐H in 47–94% isolated yields. These fluorinated silica nanocomposites‐encapsulated Ar‐H can exhibit no weight loss behavior corresponding to the contents of Ar‐H after calcination at 800 °C under atmospheric conditions, although fluoroalkyl end‐capped acrylic acid oligomer in the nanocomposites decomposed completely under similar conditions. UV‐vis spectra of well‐dispersed methanol solutions of RF‐(ACA)n‐RF/SiO2/CPC nanocomposites before calcination show that CPC can be encapsulated into fluorinated silica nanocomposites with encapsulated ratios: 23–43%. The fluorinated nanocomposites after calcination was found to exhibit a higher antibacterial activity related to the presence of CPC in the composites. Encapsulated bisphenol AF into RF‐(ACA)n‐RF/SiO2 nanocomposites before and after calcination at 800 °C can exhibit a good releasing ability toward methanol with released ratios: 48 and 26%, respectively. 1H MAS NMR, HPLC analysis, and LC‐MS spectra of RF‐(ACA)n‐RF/silica nanocomposites‐encapsulated bisphenol AF also showed the presence of bisphenol AF in the nanocomposites even after calcination at 800 °C under atmospheric conditions. These findings suggest that CPC and bisphenol AF can exhibit a nonflammable characteristic in the fluorinated silica nanocomposites. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
Fluoroalkyl end‐capped vinyltrimethoxysilane oligomer [RF‐(VM)nRF] reacted with boric acid to afford the corresponding fluorinated oligomeric silica/boric acid nanocomposite [RF‐(VM? SiO2)nRF/B(OH)3] fine particles with mean diameter: 36–105 nm. The obtained RF‐(VM? SiO2)nRF/B(OH)3 nanocomposites were applied to the encapsulation of low molecular weight organic compounds such as diphenylsilanediol, 1,1′‐bi‐2‐naphthol, 4,4′‐biphenol, bisphenol A, bisphenol F, bisphenol AF, biphenyl, dibenzyl, and pentaerythritol into these nanocomposite cores to provide the corresponding fluorinated oligomeric silica/boric acid nanocomposites—encapsulated these organic molecules. Interestingly, the obtained nanocomposites were found to exhibit no weight loss behavior corresponding to the contents of these guest molecules even after calcination at 800 °C, although these nanocomposites were isolated through no purification process. The RF‐(VM? SiO2)nRF nanocomposites—encapsulated these organic guest molecules were prepared under similar conditions. However, it was demonstrated that these nanocomposites can provide the clear weight loss corresponding to the contents of these guest molecules in the nanocomposites after calcination at 800 °C. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3835–3845  相似文献   

3.
Calcium chloride reacted with sodium carbonate in the presence of a variety of fluoroalkyl end‐capped oligomers such as fluoroalkyl end‐capped acrylic acid oligomer (RF‐[ACA]n‐RF), 2‐methacryloyloxyethanesulfonic acid oligomer (RF‐[MES]n‐RF), N,N‐dimethylacrylamide oligomer (RF‐[DMAA]n‐RF) and acryloylmorpholine oligomer (RF‐[ACMO]n‐RF) to afford the corresponding fluorinated oligomers/calcium carbonate composites. Each fluorinated oligomer/calcium carbonate composite thus obtained is nanometer size‐controlled very fine particles (25–114 nm) possessing a good dispersibility and stability in a variety of solvents including water. Thermal stability of these fluorinated calcium carbonate nanocomposites was studied by thermogravimetic analyses measurements. Fluorinated oligomes, in which the theoretical oligomer content in the composites is 19%, were able to give no weight loss corresponding to the content of oligomer in each case even after calcination at 800 °C. On the other hand, a slight weight loss corresponding to the contents of oligomers in the composites after calcination at 800 °C was observed in RF‐(MES)n‐RF/, RF‐(DMAA)n‐RF/ and RF‐(ACMO)n‐RF/calcium carbonate nanocomposites, in which the theoretical contents of the oligomers were 36–53%, although RF‐(ACA)n‐RF/calcium carbonate nanocomposites gave a clear weight loss corresponding to the contents of oligomer under similar conditions. Fluorinated oligomers/calcium carbonate nanocomposites possessing no weight loss at 800 °C were applied to the surface modification of poly(methyl methacrylate) (PMMA) to exhibit a good oleophobicity imparted by fluorines on the surfaces. Interestingly, these fluorinated calcium carbonate nanocomposites after calcination at 800 °C were found to exhibit the similar oleophobic characteristic on the modified PMMA surfaces as well as that of the nanocomposites before calcination. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A variety of fluoroalkyl end‐capped N‐(1,1‐dimethyl‐3‐oxobutyl)acrylamide oligomer [RF‐(DOBAA)n‐ RF]/silica nanocomposites, in which the oligomer contents are 18–96%, were prepared by reactions of the corresponding fluorinated oligomer with tetraethoxysilane and silica nanoparticles under alkaline conditions. Each fluorinated oligomer/silica composite thus obtained is nanometer size‐controlled very fine particles (22–68 nm) possessing a good dispersibility and stability in a variety of solvents including water. Interestingly, the weight loss of RF‐(DOBAA)n‐RF/silica nanocomposites, in which the oligomer contents are 18–72%, were not observed at all even at 800°C, as well as the original silica nanoparticles, although the corresponding sub‐micrometer size‐controlled RF‐ (DOBAA)n‐RF/silica composites (particle size: 359 nm) decomposed completely at 800°C to afford the weight loss in proportion to the content of RF‐(DOBAA)n‐RF oligomer in composites. On the other hand, a slight weight loss of RF‐(DOBAA)n‐RF/silica nanocomposites, in which the oligomer contents are 75–94%, was observed at 800°C compared to that of the original silica nanoparticles. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Aromatic ketones such as 4′‐methoxyacetophenone (MAP), acetophenone (AP), 4‐acetylbiphenyl (ABP), and 2‐acetyl‐6‐methoxynapthalene (AMN) interacted with fluoroalkyl end‐capped 2‐acrylamido‐2‐methylpropanesulfonic acid oligomer [RF‐(AMPS)n‐RF] at 80°C for 3 h to give the corresponding fluorinated oligomer/aromatic ketones composites. In these composites, the RF‐(AMPS)n‐RF/MAP and /AP composites were found to give the homoaldol condensation products of MAP and AP, respectively. In contrast, the corresponding non‐fluorinated AMPS oligomer/MAP and sulfuric acid/MAP composites could not give the homoaldol product at all under similar conditions. This suggests that the RF‐(AMPS)n‐RF oligomer could provide the suitable fluorinated oligomeric gel newtwok cores to interact with MAP or AP as a guest molecule, and the homoaldol condensation of encapsulated MAP and AP should proceed smoothly in the fluorinated oligomeric gel network cores. The RF‐(AMPS)n‐RF/ABP and /AMN composites could not give the homoaldol products at all under similar conditions, indicating that the more bulky aromotic ketones than MAP or AP are not likely to be encapasulated as guest molecules into the fluorinated AMPS oligomeric gel netwok cores. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A reddish‐brown fluoroalkyl end‐capped 2‐acrylamido‐2‐methylpropanesulfonic acid (AMPS) oligomer/acetone composite was prepared by heating the white oligomer powder with acetone at 80 °C for 3 h. The color was not observed in the corresponding non‐fluorinated AMPS oligomer/acetone composite, which was prepared under similar conditions. The coloring was probably caused by the formation of acetone polyaldol condensation products in the fluorinated oligomeric gel network cores. The colored RF‐(AMPS)n‐RF/acetone composite powders were stable and did not exhibit any color change after 2 years in natural light at room temperature. The colored composite powders dissolved in methanol to give a reddish‐brown solution at room temperature. However, the retro‐polyaldol condensation decolored the solution after 1 day at room temperature. This is the first example of the retro‐aldol polycondensation of acetone under mild conditions. The decoloration increased by between 38‐ and 70‐fold under UV irradiation, compared with that in dark conditions. The coloring–decoloring behavior was consistent and repeatable; therefore our fluorinated oligomer/acetone composites are promising candidates for new fluorinated coloring materials. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2555–2564  相似文献   

7.
Fluoroalkyl end‐capped N,N‐dimethylacrylamide oligomer and N‐(1,1‐dimethyl‐3‐oxobutyl)acrylamide oligomer were reacted with phenylene‐ and biphenylene‐bridged ethoxysilanes under alkaline conditions to yield cross‐linked fluoroalkyl end‐capped oligomeric composites possessing aromatic siloxane segments as core units. These isolated fluorinated composite powders were found to be nanometer size‐controlled fine particles with a good dispersibility and stability in water and organic solvents. Nitrogen adsorption–desorption isotherms confirmed the presence of micropores in these nanocomposites; the micropore size estimated by the HK method was 0.7–0.8 nm. Interestingly, fluorinated nanocomposites possessing a higher micropore volume ratio were found to exhibit a selective encapsulation ability of fullerene into their composite cores. These fluorinated nanocomposites were also applied to the surface modification of poly(methyl methacrylate) film, resulting in a good oleophobicity imparted by fluorine on the surface. In addition, fluorescence emission was visibly observed only from the modified PMMA film surface treated with fluorinated nanocomposites possessing biphenylene units when irradiated by light. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A variety of fluoroalkyl end‐capped oligomers/silver nanocomposites were prepared by the reactions of silver ions with poly(methylhydrosiloxane) in the presence of fluoroalkyl end‐capped N,N‐dimethylacrylamide oligomer, N‐(1,1‐dimethyl‐3‐oxobutyl)acrylamide oligomer, N,N‐dimethylacrylamide cooligomer containing poly(dimethylsiloxane) segments in organic media such as toluene and 1,2‐ dichloroethane. These fluorinated oligomers/silver nanocomposites thus obtained were found to exhibit clear plasmon absorption bands around 420 nm related to the formation of silver nanoparticles. In particular, these composites could display narrow plasmon absorptions around 420 nm in toluene by the addition of trioctylamine (TOA). On the other hand, the corresponding non‐fluorinated N‐(1,1‐ dimethyl‐3‐oxobutyl)acrylamide oligomer was not able to afford such a plasmon absorption under similar conditions. These fluorinated oligomers/silver nanocomposites in organic media have been found to be stable for more than 10 days. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements showed that silver nanoparticles could be effectively encapsulated into fluorinated oligomeric aggregate cores to afford colloidal stable fluorinated oligomers/silver nanocomposites. Fluorinated oligomers/silver nanocomposites were also applied to the surface modification of traditional organic polymers such as polystyrene (PSt) and poly(methyl methacrylate) (PMMA) to exhibit not only a good oleophobicity imparted by fluorine but also a higher surface antibacterial activity related to the silver nanoparticles on their surface. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Two kinds of fluoroalkyl end-capped vinyltrimethoxysilane oligomer [RF-(VM) n -RF] silica nanocomposites containing biphenylene units were prepared by the sol-gel reactions of the corresponding oligomer with biphenylene-bridged ethoxysilanes or 4,4′-biphenol under alkaline conditions, respectively. One is the fluorinated oligomer/silica nanocomposites containing biphenylene units [RF-(VM-SiO2) n –RF/Ar-SiO 2 ], of whose biphenylene units were incorporated into nanocomposite cores through the siloxane bondings, and the other is the fluorinated oligomer/silica nanocomposites containing biphenylene units [RF-(VM-SiO2) n –RF/Biphenol], of whose biphenylene units were directly encapsulated into nanocomposite cores through the sol–gel process. Interestingly, the shape of RF-(VM-SiO2) n –RF/Ar-SiO 2 nanocomposites is morphologically controlled cubic particles; although the shape of RF-(VM-SiO2) n –RF/Biphenol nanocomposites is spherically fine particles. Thermogravimetric analyses 2H magic-angle spinning nuclear magnetic resonance, Ultraviolet visible, and fluorescent spectra showed that biphenylene units in RF-(VM-SiO2) n –RF/Ar-SiO 2 nanocomposites have a flammable characteristic after calcinations at 800 °C; in contrast, biphenylene units in RF-(VM-SiO2) n –RF/Biphenol nanocomposites have a nonflammable characteristic even after calcination at 800 °C. X-ray photoelectron spectroscopy analyses of these two kinds of fluorinated nanocomposites showed that nonflammable characteristic toward biphenylene units in the silica gel matrices is due to the formation of ammonium hexafluorosilicate during the sol–gel process.  相似文献   

10.
Perfluoro-2-methyl-3-oxahexanoic acid/silica nanocomposites [RF-CO2H/SiO2] were prepared by the sol–gel reaction of tetraethoxysilane in the presence of silica nanoparticles and the corresponding fluorinated carboxylic acid under alkaline conditions. RF-CO2H/SiO2 nanocomposites were found to exhibit no weight loss in proportion to the contents of fluorinated carboxylic acid in the composites even after calcination at 800 °C. The modified glass surface treated with the RF-CO2H/SiO2 nanocomposites was shown to give a good oleophobicity with superhydrophilicity imparted by fluorinated carboxylic acid in the composites. RF-CO2H/SiO2 nanocomposites were also applied to the encapsulation of a variety of low molecular weight aromatic and aliphatic compounds such as bisphenol AF [BPAF], bisphenol A [BPA], 4,4′-biphenol [BPOH], octafluoro-4,4′-biphenol [FBPOH], 4,4′-bis(triethoxysilyl)-1,1′-biphenyl [BTSBP], 3-(trihydroxysilyl)propane-1-sulfonic acid [THSP], α-cyclodextrin (α-CD), β-cyclodextrin (β-CD), and γ-cyclodextrin (γ-CD). Encapsulated aromatic compounds possessing acidic hydroxyl groups such as BPAF, BPA, and FBPOH in the RF-COOH/SiO2 nanocomposites were found to exhibit no weight loss corresponding to the contents of aromatic compounds in the composites even after calcination at 800 °C. On the other hand, encapsulated aromatic compounds possessing no acidic hydroxyl groups such as BTSBP and aliphatic compounds (THSP, α-, β-, and γ-CD) gave a clear weight loss corresponding to the contents of these compounds in the composites after calcination. In addition, the fluorinated silica nanocomposite-encapsulated these compounds were applied to the surface modification of glass to exhibit a good oleophobicity with superhydrophilicity imparted by fluorinated carboxylic acid on the surface.
Figure
?  相似文献   

11.
Cross-linked fluoroalkyl end-capped cooligomers possessing double decker-type aromatic silsesquioxane segments as core units [RF-(Ar-SiSQ) x -(Co-M) y -RF] were prepared under mild conditions by the cooligomerizations of fluoroalkanoyl peroxide with the corresponding aromatic silsesquioxane possessing bifunctional vinyl groups (Ar-SiSQ) and comonomers (Co-M) such as acryloylmorpholine (ACMO), N,N-dimethylacrylamide (DMAA) and N-(1,1-dimethyl-3-oxobutyl)acrylamide (DOBAA). Interestingly, these cross-linked fluorinated cooligomers thus obtained were found to form the nanometer size-controlled nanoparticles with a good dispersibility in a variety of solvents including fluorinated aliphatic solvents. These fluorinated cooligomeric nanoparticles were demonstrated to have red-shifted fluorescent emissions related to the presence of aromatic silsesquioxane segments, compared with that of parent aromatic silsesquioxane, indicating that each aromatic moiety in these nanoparticles can interact effectively with each other through the π–π stacking between the aromatic moieties to afford the red-shifted fluorescent emissions. These fluorinated nanoparticles were also applied to the surface modification of poly(methyl methacrylate) (PMMA) to exhibit not only a good oleophobicity imparted by fluorine but also a fluorescent emission behavior related to aromatic silsesquioxane segments in nanoparticles on the modified PMMA surface. More interestingly, cross-linked RF-(Ar-SiSQ) x -(DOBAA) y -RF cooligomeric nanoparticles interacted with fluorescein to give the corresponding fluorinated cooligomeric particles/fluorescein nanocomposites in methanol. These fluorinated fluorescein nanocomposites were found to afford an extraordinarily enhanced light absorption (λ max = 441 nm), compared with that of fluoroalkyl end-capped DOBAA oligomer [RF-(DOBAA) n -RF] possessing no aromatic silsesquioxane segments.  相似文献   

12.
Cross-linked fluoroalkyl end-capped oligomeric nanocomposites possessing aromatic siloxane segments as core units [RF-oligomer/Ar-SiO 2 ] exhibited an encapsulation ability toward organic dyes such as methylene blue (MB), rhodamine B (RB), 4-hydroxyazobenzene-4′-sulfonic acid sodium salt, and methyl orange (MO). In these organic dyes, MB and RB are effectively encapsulated into these nanocomposites in aqueous solutions. RF-oligomer/Ar-SiO 2 nanocomposite-encapsulated organic dyes were found to exhibit a controlled releasing characteristic toward these encapsulated dyes, and encapsulated MB was not released into water; however, this encapsulated dye was smoothly released into acetone under similar conditions. Interestingly, RF-oligomer/Ar-SiO 2 nanocomposites possessing biphenylene segments as core units were able to exhibit not a photostable characteristic but extremely higher photodegradation ability toward MO under UV light irradiation.  相似文献   

13.
Fluoroalkyl end‐capped acrylic acid, N,N‐dimethylacrylamide, N‐(1,1‐dimethyl‐3‐oxobutyl)acrylamide and vinyltrimethoxysilane oligomers reacted with polyamic acid possessing trimethoxysilyl groups under alkaline conditions to yield the corresponding fluoroalkyl end‐capped oligomers/polyamic acid/silica nanocomposites. These isolated fluorinated composite powders were found to afford nanometer size‐controlled fine particles with a good dispersibility and stability in water and traditional organic solvents. We succeeded in preparing new fluoroalkyl end‐capped oligomers/polyimide/silica nanocomposites by the imidization of fluorinated polyamic acid silica nanocomposites through the stepwise heating at 110 and 270°C under air atmosphere conditions. These fluorinated polyimide/silica nanocomposites thus obtained were applied to the surface modification of glass and poly(methyl methacrylate) (PMMA) to exhibit good hydro‐ and oleo‐phobic characteristics imparted by fluoroalkyl groups in the composites on their surface. In addition, the surface morphology of the modified glass treated with these fluorinated nanocomposites were analyzed by using FE‐SEM and DFM. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Fluoroalkyl end-capped vinyltrimethoxysilane oligomer/anatase titanium oxide nanocomposite-encapsulated low molecular weight aromatic compounds [RF-(VM-SiO2)n-RF/an-TiO2/Ar-H] were prepared by the sol–gel reactions of the corresponding oligomer in the presence of anatase titanium oxide nanoparticles (an-TiO2) and the aromatic compounds such as bisphenol A [BPA], 1,1′-bi(2-naphthol) [BINOL], and fullerene under alkaline conditions. Thermogravimetric analyses measurements show that RF-(VM-SiO2)n-RF/an-TiO2 nanocomposite-encapsulated BPA and BINOL, in which the theoretical contents in the composites are 25?~?32 %, were found to give no weight loss corresponding to the contents of these aromatic compounds even after calcination at 800 °C. On the other hand, the corresponding nanocomposite-encapsulated fullerene exhibited weight loss behavior related to the presence of fullerene under similar conditions; however, UV–vis spectra showed the presence of the residual fullerene in the composites even after calcination. An-TiO2 in these fluorinated nanocomposites can keep its crystalline structure without phase transformation into rutile even after calcination at 1,000 °C, although the parent an-TiO2 nanoparticles underwent a complete phase transformation into rutile under similar conditions. Notably, RF-(VM-SiO2)n-RF/an-TiO2/Ar-H nanocomposites can give a good photocatalytic activity even after calcination at 1,000 °C for the decolorization of methylene blue under UV light irradiation. More interestingly, these fluorinated nanocomposites before and after calcination were found to exhibit a higher photocatalytic activity at the initial UV light irradiation from 1 to 3 min than that of the corresponding RF-(VM-SiO2)n-RF/an-TiO2 nanocomposites under similar conditions.
Figure
Encapsulated BPA and BINOL in the nanocomposites exhibit no weight loss even after calcination at 800 °C, and RF-(VM-SiO2)n-RF/an-TiO2/Ar-H nanocomposites before and after calcination at 1,000 °C can give a higher photocatalytic activity than that of RF-(VM-SiO2)n-RF/an-TiO2 nanocomposites. Notably, the photocatalytic activity of RF-(VM-SiO2)n-RF/an-TiO2/C60 nanocomposites after calcination increased by about 2.5-fold, compared with that of RF-(VM-SiO2)n-RF/an-TiO2 nanocomposites.  相似文献   

15.
A variety of fluoroalkyl end-capped oligomers, such as fluoroalkyl end-capped acrylic acid oligomer [RF-(ACA) n -RF], acryloylmorpholine oligomer [RF-(ACMO) n -RF], 2-acrylamido-2-methylpropanesulfonic acid oligomer [RF-(AMPS) n -RF], 2-(methacryloyloxy)ethanesulfonic acid oligomer [RF-(MES) n -RF], and N,N-dimethylacrylamide oligomer [RF-(DMAA) n -RF], were applied to the autoreduction of gold ions to give the corresponding oligomers/gold nanocomposites, of whose sharp plasmon absorption bands are observed around 535 nm. In these fluorinated oligomers, RF-(ACA) n -RF oligomer and RF-(ACMO) n -RF were effective for the one-pot preparation of the gold nanoparticles under very mild conditions; although the other fluorinated oligomers and the corresponding non-fluorinated–(ACMO) n -oligomer were unable to afford the gold nanoparticles. RF-(ACA) n -RF/SiO2 nanocomposites and RF-(ACMO) n -RF/SiO2 nanocomposites, which were prepared by the sol–gel reactions of tetraethoxysilane in the presence of silica nanoparticles and the corresponding oligomers under alkaline conditions, were also applied to the encapsulation of gold nanoparticles into these fluorinated nanocomposite cores through the autoreduction of gold ions at room temperature. Interestingly, these fluorinated oligomers/silica nanocomposite-encapsulated gold nanocomposites before and after calcination at 800 °C were found to exhibit the same plasmon absorption band around 525 nm. RF-(MES) n -RF oligomer and RF-(AMPS) n -RF oligomer are not suitable for the autoreduction of gold ions; however, RF-(MES)n-RF[or RF-(AMPS) n -RF]/polyaniline [PAn] nanocomposites, which were prepared by the polymerization of aniline initiated by ammonium persulfate in the presence of the corresponding oligomer, enabled the formation of gold nanoparticles through the oxidation of PAn in the composites at room temperature. The reversible conformational change of PAn in the nanocomposites from the polyemeraldine salt to the oxidized pernigraniline base was observed during such oxidation process. Graphical abstract
?  相似文献   

16.
Fluoroalkyl end‐capped cooligomers that contain both oxime‐blocked isocyanato and hydroxyadamantyl segments are prepared by the cooligomerization of fluoroalkanoyl peroxide with the corresponding monomers under mild conditions. This fluorinated cooligomer affords new cross‐linked fluoroalkyl end‐capped cooligomeric nanoparticles that contain adamantane segments by the deprotecting reaction of oxime‐blocked isocyanato segments in cooligomers in excellent to moderate isolated yield. A variety of cross‐linked fluoroalkyl end‐capped cooligomeric nanoparticles that contain adamantane segments are also prepared by similar deprotecting reactions with this fluorinated cooligomer in the presence of adamantane‐1,5‐diol. Furthermore, we have prepared cross‐linked fluoroalkyl end‐capped cooligomers that contain oxime‐blocked isocyanato segments by the use of 2‐hydroxyethyl acrylate and poly(ethylene glycol)‐containing methacrylate monomer as comonomers, respectively. However, the deprotecting reactions of the oxime‐blocked isocyanato segments in the cooligomers do not afford the expected nanoparticles, and these cross‐linked cooligomers are found to show a gelling characteristic. The thermal stability of these cross‐linked fluorinated cooligomeric nanoparticles that contain adamantane segments increases significantly compared to that of the parent fluorinated cooligomer. More interestingly, the thermal stability of these cross‐linked fluorinated nanoparticles is almost the same as that of the fluoroalkyl end‐capped acrylic acid oligomer/SiO2 nanocomposites (content of SiO2 in composites: 70%). In addition, these cross‐linked fluorinated nanoparticles have been applied to the surface modification of traditional organic polymers such as poly(methyl methacrylate) to exhibit a good oleophobicity imparted by fluorine on their surface.

  相似文献   


17.
New fluoroalkyl end‐capped oligomers/silica gel polymer hybrids‐low‐molecular weight biocide (hibitane) composites were prepared by the reactions of tetraethoxysilane (TEOS) with fluoroalkyl end‐capped N‐(1,1‐dimethyl‐3‐oxobutyl)acrylamide oligomer, N,N‐dimethylacrylamide oligomers, and acrylic acid oligomers in methanol under acidic conditions at room temperature. The presence of hibitane in the composites was clarified by the use of elementary analyses of nitrogen in fluorinated acrylic acid oligomer composite and thermogravimetric analysis (TGA) of these fluorinated composites. Thermal stability of fluorinated composites thus obtained were found to increase significantly compared to those of the parent fluorinated oligomers. Thermal stability of fluorinated N,N‐dimethylacrylamide oligomer, acrylic acid oligomer/silica gel polymers hybrid‐hibitane composites decreased compared to those of the corresponding fluorinated oligomers/silica gel polymer hybrids; however, the thermal stability of fluorinated N‐(1,1‐dimethyl‐3‐oxobutylacryl)amide oligomer/silica gel polymer hybrid‐hibitane composite increased significantly compared to that of the corresponding fluorinated oligomer hybrid. The sol methanol solutions of these fluorinated composites were applied to the surface modification of glass to exhibit not only a strong oleophobicity imparted by end‐capped fluoroalkyl groups in oligomers but also a good hydrophilicity on the glass surface. Fluorinated oligomers/silica gel polymer hybrids‐hibitane composites were found to exhibit high anti‐bacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus. Therefore, these fluorinated hibitane composites are suggested to have high potential for new attractive functional materials through not only their excellent surface active property imparted by fluorine and their thermal stability but also through their anti‐bacterial activity. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Fluoroalkyl end-capped N-(1,1-dimethyl-3-oxobutyl)acrylamide oligomer [RF-(DOBAA)n-RF]/silica gel nanocomposite, which was prepared by reaction of the corresponding fluorinated oligomer with tetraethoxysilane and silica gel nanoparticles under alkaline conditions, exhibited no weight loss even at 800 °C equal to the original silica gel, although the corresponding parent RF-(DOBAA)n-RF oligomer was completely degraded at 600 °C. Thermogravimetric analyses/mass spectra of fluorinated nanocomposite showed that this nanocomposite decomposed around 280 °C to afford CO2 and H2O as the major evolved gaseous products including some minor fluoro- and hydrocarbons. X-ray photoelectron spectroscopy analyses also showed that the contents of C, F, and Si atoms in RF-(DOBAA)n-RF/SiO2 nanocomposite after the calcination at 800 °C were similar to those before the calcination. These findings suggest that the evolved gaseous products should be encapsulated quantitatively into nanometer-size-controlled silica matrices to give the fluorinated silica gel nanocomposite with no weight loss even at 800 °C equal to the original silica gel.  相似文献   

19.
Nonionic‐type amphiphilic fluoroalkyl end‐capped acryloylmorpholine and N,N‐dimethylacrylamide homooligomers were found to be new convenient intercalating agents for the achievement of an enlarged basal spacing of the clay layers to afford fluorinated oligomers‐clay nanocomposites. These novel fluoroalkyl end‐capped oligomers‐clay nanocomposites were found to exhibit good dispersibility and stability in aqueous and organic media, and were applied to the surface modification of traditional organic polymeric materials such as poly(methyl methacrylate). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Fluoroalkyl end-capped vinyltrimethoxysilane oligomer [RF-(VM)n-RF] underwent the sol-gel reaction under alkaline conditions in the presence of anatase titanium oxide nanoparticles (an-TiO2) in tetrahydrofuran to give the corresponding fluorinated oligomer/anatase titanium oxide nanocomposites [RF-(VM-SiO2)n-RF/an-TiO2]. Crystalline structure of an-TiO2 in the nanocomposites thus obtained was found to keep completely its structure without phase transformation to rutile even after calcination at 1000 °C, although crystalline structure of the original an-TiO2 nanoparticles underwent a complete phase transformation to the rutile under similar conditions. Interestingly, RF-(VM-SiO2)n-RF/an-TiO2 nanocomposites before and after calcination at 1000 °C exhibited the similar photocatalytic activity for the decolorization of methylene blue under UV light irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号