首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
By chemical correlation with manool and ambrein the absolute configurations of the enantiomeric α-cyclogeranic acids, α-cyclogeranials, α-ionones and α- and ?-carotenes have been elucidated.  相似文献   

4.
Katmusi Kotera 《Tetrahedron》1961,12(4):248-261
Hydrogenation of -anhydrodihydrocaranine (V) or anhydrocaranine (VII) with Adams catalyst in acetic acid or the Hauptmann reduction of -dihydrocaranone (XX) yielded (—)γ-lycorane (XVII). Catalytic reduction of β-anhydrodihydrocaranine (IX) with palladium-carbon in ethanol gave (+)γ-lycorane (XVIII), while with Adams catalyst in acetic acid it afforded (+)δ-lycorane (XIX) along with (—)β-lycorane (III). Reduction of anhydrocaranine in ethanol gave (±)γ-lycorane which was also obtained by hydrogenation of anhydrolycorine (X). Based on these findings, the configurational structures of -, β-, γ- and δ-lycorane were established and the configuration of dihydrolycorine was confirmed.  相似文献   

5.
6.
7.
A one‐step transformation of γ‐ and δ‐(spiro)lactones into γ,δ‐ and δ,ε‐unsaturated aldehydes with an excess of formic acid in the vapor phase over a supported manganese catalyst is described for the first time. The scope and limitations of this new reaction are shown with different lactones as substrate, and a mechanistic rationale is proposed.  相似文献   

8.
9.
Two new series of Boc‐N‐α,δ‐/δ,α‐ and β,δ‐/δ,β‐hybrid peptides containing repeats of L ‐Ala‐δ5‐Caa/δ5‐Caa‐L ‐Ala and β3‐Caa‐δ5‐Caa/δ5‐Caa‐β3‐Caa (L ‐Ala = L ‐alanine, Caa = C‐linked carbo amino acid derived from D ‐xylose) have been differentiated by both positive and negative ion electrospray ionization (ESI) ion trap tandem mass spectrometry (MS/MS). MSn spectra of protonated isomeric peptides produce characteristic fragmentation involving the peptide backbone, the Boc‐group, and the side chain. The dipeptide positional isomers are differentiated by the collision‐induced dissociation (CID) of the protonated peptides. The loss of 2‐methylprop‐1‐ene is more pronounced for Boc‐NH‐L ‐Ala‐δ‐Caa‐OCH3 (1), whereas it is totally absent for its positional isomer Boc‐NH‐δ‐Caa‐L ‐Ala‐OCH3 (7), instead it shows significant loss of t‐butanol. On the other hand, second isomeric pair shows significant loss of t‐butanol and loss of acetone for Boc‐NH‐δ‐Caa‐β‐Caa‐OCH3 (18), whereas these are insignificant for its positional isomer Boc‐NH‐β‐Caa‐δ‐Caa‐OCH3 (13). The tetra‐ and hexapeptide positional isomers also show significant differences in MS2 and MS3 CID spectra. It is observed that ‘b’ ions are abundant when oxazolone structures are formed through five‐membered cyclic transition state and cyclization process for larger ‘b’ ions led to its insignificant abundance. However, b1+ ion is formed in case of δ,α‐dipeptide that may have a six‐membered substituted piperidone ion structure. Furthermore, ESI negative ion MS/MS has also been found to be useful for differentiating these isomeric peptide acids. Thus, the results of MS/MS of pairs of di‐, tetra‐, and hexapeptide positional isomers provide peptide sequencing information and distinguish the positional isomers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
By heating with iron powder at 120–150° some γ-bromo-α, β-unsaturated carboxylic methyl esters, and, less smothly, the corresponding acids, were lactonized to Δ7alpha;-butenolides with elimination of methyl bromide. The following conversions have thus been made: methyl γ-bromocrotonate ( 1c ) and the corresponding acid ( 1d ) to Δα-butenolide ( 8a ), methyl γ-bromotiglate ( 3c ) and the corresponding acid ( 3d ) to α-methyl-Δα-butenolide ( 8b ), a mixture of methyl trans- and cis-γ-bromosenecioate ( 7c and 7e ) and a mixture of the corresponding acids ( 7d and 7f ) to β-methyl-Δα-butenolide ( 8c ). The procedure did not work with methyl trans-γ-bromo-Δα-pentenoate ( 5c ) nor with its acid ( 5d ). Most of the γ-bromo-α, β-unsaturated carboxylic esters ( 1c, 7c, 7e and 5c ) are available by direct N-bromosuccinimide bromination of the α, β-unsaturated esters 1a, 7a and 5a ; methyl γ-bromotiglate ( 3c ) is obtained from both methyl tiglate ( 3a ) and methyl angelate ( 4a ), but has to be separated from a structural isomer. The γ-bromo-α, β-unsaturated esters are shown by NMR. to have the indicated configurations which are independent of the configuration of the α, β-unsaturated esters used; the bromination always leads to the more stable configuration, usually the one with the bromine-carrying carbon anti to the carboxylic ester group; an exception is methyl γ-bromo-senecioate, for which the two isomers (cis, 7e , and trans, 7d ) have about the same stability. The N-bromosuccinimide bromination of the α,β-unsaturated carboxylic acids 1b , 3b , 4b , 5b and 7b is shown to give results entirely analogous to those with the corresponding esters. In this way γ-bromocrotonic acid ( 1 d ), γ-bromotiglic acid ( 3 d ), trans- and cis-γ-bromosenecioic acid ( 7d and 7f ) as well as trans-γ-bromo-Δα-pentenoic acid ( 5d ) have been prepared. Iron powder seems to catalyze the lactonization by facilitating both the elimination of methyl bromide (or, less smoothly, hydrogen bromide) and the rotation about the double bond. α-Methyl-Δα-butenolide ( 8b ) was converted to 1-benzyl-( 9a ), 1-cyclohexyl-( 9b ), and 1-(4′-picoly1)-3-methyl-Δα-pyrrolin-2-one ( 9 c ) by heating at 180° with benzylamine, cyclohexylamine, and 4-picolylamine. The butenolide 8b showed cytostatic and even cytocidal activity; in preliminary tests, no carcinogenicity was observed. Both 8b and 9c exhibited little toxicity.  相似文献   

11.
12.
13.
The rate of ZnAl2O4 formation was measured for η-, γ-; and α- Al2O3 in order to distinguish the reactivity of them. The reactivity decreased as follows: η- > γ- > α-Al2O3. The reaction rate fitted to Jander's equation and the activation energies calculated were 33, 47 and 113 Kcal/mol for η-, γ- and α-Al2O3 systems, respectively. These differences are explained by an assumption that η- and γ-Al2O3 resulted in a ZnAl2O4 with imperfect spinel structure, but α-Al2O3 gave the perfect spinel structure. This assumption is based on the theoretical consideration of the activation energy needed for the diffusion-controlled reaction and date of lattice constant of each ZnAl2O4 obtained from three aluminas. The fact that η-Al2O3 shows very high reactivity compared with that of γ-Al2O3 was found to be explained on the basis of Jander's equation, a comparison of specific surface area and the defect structures of the aluminas.  相似文献   

14.
It is made clear that two different statements in the literature concerning energy derivatives are completely compatible by deriving them as two different interpretations of the same equation. Some other aspects of these results are also discussed.  相似文献   

15.
16.
17.
18.
19.
The δ polymorph of sulfanilamide (or 4‐aminobenzenesulfonamide), C6H8N2O2S, displays an overall three‐dimensional hydrogen‐bonded network that is dominated by a two‐dimensional substructure with R22(8) rings; these result from dimeric N—H...O interactions between adjacent sulfonamide groups. This study shows how the polymorphism of sulfanilamide is linked to its versatile hydrogen‐bonding capabilities.  相似文献   

20.
On irradiation with light of wavelengths 2537 or > 3400 Å 4,4-dimethyl-17β-acetoxy-androst-5-ene-3, 7-dione ( 8 ) rearranges to the two diastereoisomeric products 9 and 10 . This isomerization is the only detectable photochemical reaction of 8 in a variety of solvents, including p-dioxane. Complete quenching with 0.5M naphthalene (on irradiation with > 3400 Å) indicates a triplet reaction. The photochemistry of the 3-ethylene ketal derivative 29 differs completely. Irradiation in p-dioxane solution leads exclusively to photoreduction and formation of the four diastereoisomeric dioxanyl allyl tert.-carbinols 30a – d .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号