首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 162 毫秒
1.
Proton nuclear magnetic resonance ((1)H NMR) spectroscopy for detection of biochemical changes in biological samples is a successful technique. However, the achieved NMR resolution is not sufficiently high when the analysis is performed with intact cells. To improve spectral resolution, high resolution magic angle spinning (HR-MAS) is used and the broad signals are separated by a T(2) filter based on the CPMG pulse sequence. Additionally, HR-MAS experiments with a T(2) filter are preceded by a water suppression procedure. The goal of this work is to demonstrate that the experimental procedures of water suppression and T(2) or diffusing filters are unnecessary steps when the filter diagonalization method (FDM) is used to process the time domain HR-MAS signals. Manipulation of the FDM results, represented as a tabular list of peak positions, widths, amplitudes and phases, allows the removal of water signals without the disturbing overlapping or nearby signals. Additionally, the FDM can also be used for phase correction and noise suppression, and to discriminate between sharp and broad lines. Results demonstrate the applicability of the FDM post-acquisition processing to obtain high quality HR-MAS spectra of heterogeneous biological materials.  相似文献   

2.
Super‐resolution fluorescence microscopy has enabled important breakthroughs in biology and materials science. Implementations such as single‐molecule localization microscopy (SMLM) and minimal emission fluxes (MINFLUX) microscopy in the localization mode exploit fluorophores that blink, i.e., switch on and off, stochastically. Here, we introduce nanographenes, namely large polycyclic aromatic hydrocarbons that can also be regarded as atomically precise graphene quantum dots, as a new class of fluorophores for super‐resolution fluorescence microscopy. Nanographenes exhibit outstanding photophysical properties: intrinsic blinking even in air, excellent fluorescence recovery, and stability over several months. As a proof of concept for super‐resolution applications, we use nanographenes in SMLM to generate 3D super‐resolution images of silica nanocracks. Our findings open the door for the widespread application of nanographenes in super‐resolution fluorescence microscopy.  相似文献   

3.
The filter diagonalization method (FDM) is a recently developed computational technique capable of extracting resonance frequencies and amplitudes from very short transient signals. Although it requires stable resonance frequencies and is slower than the fast Fourier transform (FFT), FDM has a resolution and accuracy that is unmatched by the FFT or any other comparable techniques. This unique feature of FDM makes it an ideal tool for tracing space charge induced frequency modulations in Fourier transform ion cyclotron resonance (FT-ICR) cells, which are shown to reach +/-400 ppm even for such simple spectra as Substance P.  相似文献   

4.
In recent years, a number of approaches have emerged that enable far‐field fluorescence imaging beyond the diffraction limit of light, namely super‐resolution microscopy. These techniques are beginning to profoundly alter our abilities to look at biological structures and dynamics and are bound to spread into conventional biological laboratories. Nowadays these approaches can be divided into two categories, one based on targeted switching and readout, and the other based on stochastic switching and readout of the fluorescence information. The main prerequisite for a successful implementation of both categories is the ability to prepare the fluorescent emitters in two distinct states, a bright and a dark state. Herein, we provide an overview of recent developments in super‐resolution microscopy techniques and outline the special requirements for the fluorescent probes used. In combination with the advances in understanding the photophysics and photochemistry of single fluorophores, we demonstrate how essentially any single‐molecule compatible fluorophore can be used for super‐resolution microscopy. We present examples for super‐resolution microscopy with standard organic fluorophores, discuss factors that influence resolution and present approaches for calibration samples for super‐resolution microscopes including AFM‐based single‐molecule assembly and DNA origami.  相似文献   

5.
Visualization of the nanoscale organization of cell membranes remains challenging because of the lack of appropriate fluorescent probes. Herein, we introduce a new design concept for super‐resolution microscopy probes that combines specific membrane targeting, on/off switching, and environment sensing functions. A functionalization strategy for solvatochromic dye Nile Red that improves its photostability is presented. The dye is grafted to a newly developed membrane‐targeting moiety composed of a sulfonate group and an alkyl chain of varied lengths. While the long‐chain probe with strong membrane binding, NR12A, is suitable for conventional microscopy, the short‐chain probe NR4A, owing to the reversible binding, enables first nanoscale cartography of the lipid order exclusively at the surface of live cells. The latter probe reveals the presence of nanoscopic protrusions and invaginations of lower lipid order in plasma membranes, suggesting a subtle connection between membrane morphology and lipid organization.  相似文献   

6.
It is often desirable to selectively remove corrupting or uninteresting signals from complex NMR spectra without disturbing overlapping or nearby signals. For biofluids in particular, removal of solvent and urea signals is important for retaining quantitative accuracy in NMR‐based metabonomics. This article presents a novel algorithm for efficient filtering of unwanted signals using the filter diagonalization method (FDM). Unwanted signals are modeled in the time domain using FDM. This modeled signal is subtracted from the original free induction decay. The resulting corrected signal is then processed using established workflow. The algorithm is found to be reliable and fast. By eliminating large, broad, uninteresting signals, many spectra can be subjected to fully automated absolute value processing, allowing objective preparation of spectra for pattern recognition analysis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
We demonstrate the potential of the commonly used red fluorescent protein mCherry for single‐molecule super‐resolution imaging. mCherry can be driven into a light‐induced dark state in the presence of a thiol from which it can recover spontaneously or by irradiation with near UV light. We show imaging of subcellular protein structures such as microtubules and the nuclear pore complex with a resolution below 40 nm. We were able to image the C‐terminus of the nuclear pore protein POM121, which is on the inside of the pore and not readily accessible for external labeling. The photon yield for mCherry is comparable to that of the latest optical highlighter fluorescent proteins. Our findings show that the widely used mCherry red fluorescent protein and the vast number of existing mCherry fusion proteins are readily amenable to super‐resolution imaging. This obviates the need for generating novel protein fusions that may compromise function or the need for external fluorescent labeling.  相似文献   

8.
Energy transfer between fluorescent dyes and quenchers is widely used in the design of light‐up probes. Although dual quenchers are more effective in offering lower background signals and higher turn‐on ratios than one quencher, such probes are less explored in practice as they require both quenchers to be within the proximity of the fluorescent core. In this contribution, we utilized intramolecular motion and photoinduced electron transfer (PET) as quenching mechanisms to build super‐quenched light‐up probes based on fluorogens with aggregation‐induced emission. The optimized light‐up probe possesses negligible background and is able to detect not only free formaldehyde (FA) but also polymeric FA, with an unprecedented turn‐on ratio of >4900. We envision that this novel dual quenching strategy will help to develop various light‐up probes for analyte sensing.  相似文献   

9.
Far‐red organic fluorophores commonly used in traditional and super‐resolution localization microscopy are found to contain a fluorescent impurity with green excitation and near‐red emission. This near‐red fluorescent impurity can interfere with some multicolor stochastic optical reconstruction microscopy/photoactivated localization microscopy measurements in live cells and produce subtle artifacts in chemically fixed cells. We additionally describe alternatives to avoid artifacts in super‐resolution localization microscopy.  相似文献   

10.
This work demonstrates resolution enhancement of a quadrupole mass filter (QMF) under the influence of a static magnetic field. Generally, QMF resolution can be improved by increasing the number of rf cycles an ion experiences when passing through the mass filter. In order to improve the resolution, the dimensions of the QMF or the operating parameters need to be changed. However, geometric modifications to improve performance increase the manufacturing cost and usually the size of the instrument. By applying a magnetic field, a low‐cost, small footprint instrument with reduced power requirements can be realized. Significant improvement in QMF resolution was observed experimentally for certain magnetic field conditions, and these have been explained in terms of our theoretical model developed at the University of Liverpool. This model is capable of accurate simulation of spectra allowing the user to specify different values of mass spectrometer dimensions and applied input signals. The model predicts enhanced instrument resolution R>26 000 for a CO2 and N2 mixture with a 200‐mm long mass filter operating in stability zone 3 via application of an axial magnetic field. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Optical super‐resolution techniques allow fluorescence imaging below the classical diffraction limit of light. From a technology standpoint, recent methods are approaching molecular‐scale spatial resolution. However, this remarkable achievement is not easily translated to imaging of cellular components, since current labeling approaches are limited by either large label sizes (antibodies) or the sparse availability of small and efficient binders (nanobodies, aptamers, genetically‐encoded tags). In this work, we combined recently developed Affimer reagents with site‐specific DNA modification for high‐efficiency labeling and imaging using DNA‐PAINT. We assayed our approach using an actin Affimer. The small DNA‐conjugated affinity binders could provide a solution for efficient multitarget super‐resolution imaging in the future.  相似文献   

12.
Mathematics has had a profound impact on science, providing a means to understand the world around us in unprecedented ways. With the advent of the digital age, the subject of information theory has grown hugely in importance. In particular, over the last two decades significant advances in our understanding of sampling and function reconstruction have culminated in the development of an idea known as compressed sensing. What seems like an abstract idea is now having a profound impact throughout the scientific world—from enabling high‐resolution imaging of pediatric patients in clinical medicine through to advancing 3D electron tomography images of nanoparticle catalysts and NMR spectroscopy studies of proteins. In this Minireview, we summarize these applications and provide an outlook on how the principles of compressed sensing are leading to entirely new approaches to measurement throughout the physical and life sciences.  相似文献   

13.
The synthesis and application of a photoactivatable boron‐alkylated BODIPY probe for localization‐based super‐resolution microscopy is reported. Photoactivation and excitation of the probe is achieved by a previously unknown boron‐photodealkylation reaction with a single low‐power visible laser and without requiring the addition of reducing agents or oxygen scavengers in the imaging buffer. These features lead to a versatile probe for localization‐based microscopy of biological systems. The probe can be easily linked to nucleophile‐containing molecules to target specific cellular organelles. By attaching paclitaxel to the photoactivatable BODIPY, in vitro and in vivo super‐resolution imaging of microtubules is demonstrated. This is the first example of single‐molecule localization‐based super‐resolution microscopy using a visible‐light‐activated BODIPY compound as a fluorescent probe.  相似文献   

14.
The Lanczos homogeneous filter diagonalization method and the real Chebyshev filter diagonalization scheme incorporating doubling of the autocorrelation functions have been employed to compute the HO2 ro-vibrational states for high total angular momenta, J = 30, 40, and 50. For such computationally challenging calculations, we have adopted a parallel computing strategy to perform the matrix-vector multiplications. Low-lying bound states and high-lying bound states close to the dissociation threshold are reported. For low-lying bound states, a spectroscopic assignment has been attempted and the widely used approximate J-shifting method has been tested for this deep-well system. For high-lying bound states, the attempted spectroscopic assignments as well as the J-shifting approximation fail because of very strong Coriolis mixing, indicating that the Coriolis couplings are important for this system.  相似文献   

15.
The major challenge facing NMR spectroscopic mixture analysis is the overlapping of signals and the arising impossibility to easily recover the structures for identification of the individual components and to integrate separated signals for quantification. In this paper, various independent component analysis (ICA) algorithms [mutual information least dependent component analysis (MILCA); stochastic non‐negative ICA (SNICA); joint approximate diagonalization of eigenmatrices (JADE); and robust, accurate, direct ICA algorithm (RADICAL)] as well as deconvolution methods [simple‐to‐use‐interactive self‐modeling mixture analysis (SIMPLISMA) and multivariate curve resolution‐alternating least squares (MCR‐ALS)] are applied for simultaneous 1H NMR spectroscopic determination of organic substances in complex mixtures. Among others, we studied constituents of the following matrices: honey, soft drinks, and liquids used in electronic cigarettes. Good quality spectral resolution of up to eight‐component mixtures was achieved (correlation coefficients between resolved and experimental spectra were not less than 0.90). In general, the relative errors in the recovered concentrations were below 12%. SIMPLISMA and MILCA algorithms were found to be preferable for NMR spectra deconvolution and showed similar performance. The proposed method was used for analysis of authentic samples. The resolved ICA concentrations match well with the results of reference gas chromatography–mass spectrometry as well as the MCR‐ALS algorithm used for comparison. ICA deconvolution considerably improves the application range of direct NMR spectroscopy for analysis of complex mixtures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The growing demands of advanced fluorescence and super‐resolution microscopy benefit from the development of small and highly photostable fluorescent probes. Techniques developed to expand the genetic code permit the residue‐specific encoding of unnatural amino acids (UAAs) armed with novel clickable chemical handles into proteins in living cells. Here we present the design of new UAAs bearing strained alkene side chains that have improved biocompatibility and stability for the attachment of tetrazine‐functionalized organic dyes by the inverse‐electron‐demand Diels–Alder cycloaddition (SPIEDAC). Furthermore, we fine‐tuned the SPIEDAC click reaction to obtain an orthogonal variant for rapid protein labeling which we termed selectivity enhanced (se) SPIEDAC. seSPIEDAC and SPIEDAC were combined for the rapid labeling of live mammalian cells with two different fluorescent probes. We demonstrate the strength of our method by visualizing insulin receptors (IRs) and virus‐like particles (VLPs) with dual‐color super‐resolution microscopy.  相似文献   

17.
Femtosecond stimulated Raman scattering (FSRS) spectroscopy is a powerful pump–probe technique that can track electronic and vibrational dynamics with high spectral and temporal resolution. The investigation of extremely short‐lived species, however, implies deciphering complex signals and is ultimately hampered by unwanted nonlinear effects once the time resolution limit is approached and the pulses overlap temporally. Using the loop diagrams formalism we calculate the fifth‐order response of a model system and address the limiting case where the relevant dynamics timescale is comparable to the pump–pulse duration and, consequently, the pump and the probe overlap temporally. We find that in this regime, additional diagrams that do not contribute for temporally well separated pulses need to be taken into account, giving rise to new time‐dependent features, even in the absence of photoinduced dynamics and for negative delays.  相似文献   

18.
Live‐cell labeling, super‐resolution microscopy, single‐molecule applications, protein localization, or chemically induced assembly are emerging approaches, which require specific and very small interaction pairs. The minimal disturbance of protein function is essential to derive unbiased insights into cellular processes. Herein, we define a new class of hexavalent N‐nitrilotriacetic acid (hexaNTA) chelators, displaying the highest affinity and stability of all NTA‐based small interaction pairs described so far. Coupled to bright organic fluorophores with fine‐tuned photophysical properties, the super‐chelator probes were delivered into human cells by chemically gated nanopores. These super‐chelators permit kinetic profiling, multiplexed labeling of His6‐ and His12‐tagged proteins as well as single‐molecule‐based super‐resolution imaging.  相似文献   

19.
Analytical methods that enable visualization of nanomaterials derived from solution self‐assembly processes in organic solvents are highly desirable. Herein, we demonstrate the use of stimulated emission depletion microscopy (STED) and single molecule localization microscopy (SMLM) to map living crystallization‐driven block copolymer (BCP) self‐assembly in organic media at the sub‐diffraction scale. Four different dyes were successfully used for single‐colour super‐resolution imaging of the BCP nanostructures allowing micelle length distributions to be determined in situ. Dual‐colour SMLM imaging was used to measure and compare the rate of addition of red fluorescent BCP to the termini of green fluorescent seed micelles to generate block comicelles. Although well‐established for aqueous systems, the results highlight the potential of super‐resolution microscopy techniques for the interrogation of self‐assembly processes in organic media.  相似文献   

20.
Bound and resonance states of HO(2) are calculated quantum mechanically using both the Lanczos homogeneous filter diagonalization method and the real Chebyshev filter diagonalization method for nonzero total angular momentum J=6 and 10, using a parallel computing strategy. For bound states, agreement between the two methods is quite satisfactory; for resonances, while the energies are in good agreement, the widths are in general agreement. The quantum nonzero-J specific unimolecular dissociation rates for HO(2) are also calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号