首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the synthesis, photophysical and electrochemical properties, and in vivo fluorescence imaging of a series of new thieno–pyrrole‐fused near‐infrared (NIR) BODIPY agents by using a versatile intermediate as a building block. The versatile thieno–pyrrole‐fused BODIPY intermediate was rationally designed to bear bromo‐substituents and absorb in the mid‐red region (635 nm) to act as an organic electrophile for the development of NIR multifunctional agents. The use of subsequent palladium‐catalyzed and nucleophilic substitution reactions afforded highly conjugated NIR BODIPYs. The novel BODIPYs exhibit long‐wavelength absorptions in the NIR region (650–840 nm). The agents produce sharp fluorescence bands, and most of them display respectable quantum yields of fluorescence (0.05–0.87) useful for biomedical imaging, as demonstrated by in vivo imaging with SBDPiR740 . Interestingly, a number of agents in the series that are non‐halogenated were reactive to O2 at the triplet photo‐excited state coupled with a favorable redox potential and decent fluorescence, and hence could be potential candidates for use as photosensitizers in fluorescence‐guided photodynamic therapy. Furthermore, the synthetic approach allows further functionalization of the highly conjugated NIR BODIPYs to tune the excited states (PET, ICT) and to conjugate targeting moieties for enhanced biological applications.  相似文献   

2.
《化学:亚洲杂志》2017,12(5):561-567
We describe herein the first synthesis of silyl‐ and disilanyl‐BODIPYs through transition‐metal‐catalyzed dehalosilylation of iodo‐BODIPYs using a Pd(P(t Bu)3)2/Et3N/toluene system. Various mono‐ and bis‐silyl‐BODIPYs, mono‐ and bis‐disilanyl‐BODIPYs and bis‐BODIPYs linked by silylene and SiOSi groups were synthesized by using this straightforward method. Silyl‐ and disilanyl‐substitution significantly modifies the spectroscopic properties of the BODIPY, in which the fluorescence quantum yields of the silyl‐BODIPYs are remarkably increased, whereas the emission spectra of disilanyl‐BODIPYs are red‐shifted due to effective σ(SiSi)–π(BODIPY) conjugation.  相似文献   

3.
The condensation of aldehydes with BODIPY (boron dipyrrin) luminophores was investigated. Formaldehyde can be used to connect two BODIPYs at each of the three pyrrolic C positions (α‐, β‐, and β′‐positions) in a quick and highly selective manner, yielding new DYEmers (di‐ and oligomeric BODIPY derivatives) with varied photophysical properties. Benzaldehydes form DYEmers only at the β‐ and the β′‐positions. For aliphatic aldehydes the DYEmer formation competes with the elimination of water from a proposed alcohol intermediate, leading to the formation of α‐ and β‐alkenyl‐BODIPYs. 2‐Phenylacetaldehyde and similar precursors exclusively yield elimination products. These acid‐mediated transformations are valuable alternatives to the well‐established, base‐promoted Knoevenagel condensation protocol that is typically employed in the preparation of BODIPYs with near infrared (NIR)‐shifted absorptions.  相似文献   

4.
A 2,6‐distyryl‐substituted boradiazaindacene (BODIPY) dye and a new series of 2,6‐p‐dimethylaminostyrene isomers containing both α‐ and β‐position styryl substituents were synthesized by reacting styrene and p‐dimethylaminostyrene with an electron‐rich diiodo‐BODIPY. The dyes were characterized by X‐ray crystallography and NMR spectroscopy and their photophysical properties were investigated and analyzed by carrying out a series of theoretical calculations. The absorption spectra contain markedly redshifted absorbance bands due to conjugation between the styryl moieties and the main BODIPY fluorophore. Very low fluorescence quantum yields and significant Stokes shifts are observed for 2,6‐distyryl‐substituted BODIPYs, relative to analogous 3,5‐distyryl‐ and 1,7‐distyryl‐substituted BODIPYs. Although the fluorescence of the compound with β‐position styryl substituents on both pyrrole moieties and one with both β‐ and α‐position substituents was completely quenched, the compound with only α‐position substituents exhibits weak emission in polar solvents, but moderately intense emission with a quantum yield of 0.49 in hexane. Protonation studies have demonstrated that these 2,6‐p‐dimethylaminostyrene isomers can be used as sensors for changes in pH. Theoretical calculations provide strong evidence that styryl rotation and the formation of non‐emissive charge‐separated S1 states play a pivotal role in shaping the fluorescence properties of these dyes. Molecular orbital theory is used as a conceptual framework to describe the electronic structures of the BODIPY core and an analysis of the angular nodal patterns provides a reasonable explanation for why the introduction of substituents at different positions on the BODIPY core has markedly differing effects.  相似文献   

5.
We report here the synthesis and electrochemical and photophysical properties of a series of easily prepared dipolar organic dyes and their application in dye‐sensitized solar cells (DSSCs). For the six organic dyes, the molecular structures comprised a triphenylamine group as an electron donor, a cyanoacrylic acid as an electron acceptor, and an electron‐deficient diphenylquinoxaline moiety integrated in the π‐conjugated spacer between the electron donor and acceptor moieties. The incorporation of the electron‐deficient diphenylquinoxaline moiety effectively reduces the energy gap of the dyes and broadly extends the spectral coverage. DSSCs based on dye 6 produced the best overall cell performance of 7.35 %, which translates to approximately 79 % of the intrinsic efficiency of the DSSCs based on the standard N719 dye under identical experimental conditions. The high performance of DSSCs based on dye 6 among the six dyes explored is attributed to the combined effects of high dye loading on a TiO2 surface, rapid dye regeneration, and effective retardation of charge recombination.  相似文献   

6.
The high performances of dye‐sensitized solar cells (DSSCs) based on seven new dyes are disclosed. Herein, the synthesis and electrochemical and photophysical properties of a series of intentionally designed dipolar organic dyes and their application in DSSCs are reported. The molecular structures of the seven organic dyes are composed of a triphenylamine group as an electron donor, a cyanoacrylic acid as an electron acceptor, and an electron‐deficient diphenylquinoxaline moiety integrated in the π‐conjugated spacer between the electron donor and acceptor moieties. The DSSCs based on the dye DJ104 gave the best overall cell performance of 8.06 %; the efficiency of the DSSC based on the standard N719 dye under the same experimental conditions was 8.82 %. The spectral coverage of incident photon‐to‐electron conversion efficiencies extends to the onset at the near‐infrared region due to strong internal charge‐transfer transition as well as the effect of electron‐deficient diphenylquinoxaline to lower the energy gap in these organic dyes. A combined tetraphenyl segment as a hydrophobic barrier in these organic dyes effectively slows down the charge recombination from TiO2 to the electrolyte and boosts the photovoltage, comparable to their RuII counterparts. Detailed spectroscopic studies have revealed the dye structure–cell performance correlations, to allow future design of efficient light‐harvesting organic dyes.  相似文献   

7.
A series of dithienylethene‐containing phosphole derivatives has been designed, synthesized and characterized. One of the compounds has been characterized by X‐ray crystallography. Upon photoexcitation, the compounds exhibit drastic color changes, ascribed to the reversible photochromic behavior. Their photochromic, photophysical and electrochemical properties have been studied. They show photochromic reactivities with high photocyclization quantum yields. Their photophysical and photochromic properties are found to be facilely tuned in this system by substitution at the phosphole backbone, as well as variation on the extent of π‐conjugation of the phosphole backbone. Some selected compounds have been demonstrated to exhibit photochromic properties in polymethylmethacrylate (PMMA) films.  相似文献   

8.
A series of electropolymerizable cyclometallated IrIII complexes were synthesized and their electrochemical and photophysical properties studied. The triphenylamine electropolymerizable fragment was introduced by using triphenylamine‐2‐phenylpyridine and, respectively, triphenylamine‐benzothiazole as cyclometalated ligands. The coordination sphere was completed by two differently substituted β‐ketoiminate ligands deriving from the condensation of acetylacetone or hexafluoroacetylacetone with para‐bromoaniline. The influence of the ‐CH3/‐CF3 substitution to the electrochemical and photophysical properties was investigated. Both complexes with CH3 substituted β‐ketoiminate were emissive in solution and in solid state. Highly stable films were electrodeposited onto ITO coated glass substrates. Their emission was quenched by electron trapping within the polymeric network as proven by electrochemical studies. The ‐CF3 substitution of the β‐ketoiminate leads instead to the quenching of the emission and inhibits electropolymerization.  相似文献   

9.
A series of metal‐free organic dyes that were bridged by a diketopyrrolopyrrole moiety and were composed of indoline and triphenylamine as donor groups and furan and benzene as conjugated spacer groups were designed and synthesized for use in dye‐sensitized solar cells (DSCs). The photophysical properties, electrochemical properties, and performance of the DSCs were related to the structure of their corresponding dyes. Their absorption spectra broadened upon the introduction of the indoline and heterocyclic furan moieties through fine‐tuning of their molecular configuration. The overall conversion efficiencies of DSCs that were based on these dyes ranged from 5.14–6.53 %. Among the four dyes that were tested, indoline‐based ID01 and ID02 showed higher efficiencies (6.35 % and 6.53 %) as a result of their improved light‐harvesting efficiency and larger electron driving force. The ID01 dye, which contained an indoline moiety as an electron donor and a furan group as a π‐conjugated linker, showed an excellent monochromatic incident‐photon‐to‐current‐conversion efficiency (IPCE) spectrum (350–650 nm) with a maximum value of 78 % in the high plateau region and an onset value close to 800 nm. Intensity‐modulated photovoltage spectroscopy (IMVS) and impedance spectroscopy (IS) revealed that dyes that contained benzene conjugation spacers suppressed the charge‐recombination rate more efficiently than dyes that contained furan spacers, thereby resulting in improved photovoltage.  相似文献   

10.
The synthesis, characterization, photophysical properties, and theoretical analysis of a series of tetraaza porphyrin analogues ( H? Pn : n=1–4) containing a dipyrrin subunit and an embedded 1,10‐phenanthroline subunit are described. The meso‐phenyl‐substituted derivative ( H? P1 ) interacts with a Mg2+ salt (e.g., MgCl2, MgBr2, MgI2, Mg(ClO4)2, and Mg(OAc)2) in MeCN solution, thereby giving rise to a cation‐dependent red‐shift in both the absorbance‐ and emission maxima. In this system, as well as in the other H? Pn porphyrin analogues used in this study, the four nitrogen atoms of the ligand interact with the bound magnesium cation to form Mg2+–dipyrrin–phenanthroline complexes of the general structure MgX? Pn (X=counteranion). Both single‐crystal X‐ray diffraction analysis of the corresponding zinc‐chloride derivative ( ZnCl? P1 ) and fluorescence spectroscopy of the Mg‐adducts that are formed from various metal salts provide support for the conclusion that, in complexes such as MgCl? P1 , a distorted square‐pyramidal geometry persists about the metal cation wherein a chloride anion acts as an axial counteranion. Several analogues ( H? Pn ) that contain electron‐donating and/or electron‐withdrawing dipyrrin moieties were prepared in an effort to understand the structure–property relationships and the photophysical attributes of these Mg–dipyrrin complexes. Analysis of various MgX? Pn (X=anion) systems revealed significant substitution effects on their chemical, electrochemical, and photophysical properties, as well as on the Mg2+‐cation affinities. The fluorescence properties of MgCl? Pn reflected the effect of donor‐excited photoinduced electron transfer (dPET) processes from the dipyrrin subunit (as a donor site) to the 1,10‐phenanthroline acceptor subunit. The proposed dPET process was analyzed by electron paramagnetic resonance (EPR) spectroscopy and by femtosecond transient absorption (TA) spectroscopy, as well as by theoretical DFT calculations. Taken together, these studies provide support for the suggestion that a radical species is produced as the result of an intramolecular charge‐transfer process, following photoexcitation. These photophysical effects, combined with a mixed dipyrrin–phenanthroline structure that is capable of effective Mg2+‐cation complexation, lead us to suggest that porphyrin‐inspired systems, such as H? Pn , have a role to play as magnesium‐cation sensors.  相似文献   

11.
Six donor–acceptor‐type near‐infrared (NIR) aza–boron‐dipyrromethene (BODIPY) dyes and their corresponding aza–dipyrrins were designed and synthesized. The donor moieties at the 1,7‐positions of the aza–BODIPY core were varied from naphthyl to N‐phenylcarbazole to N‐butylcarbazole. The 3,5‐positions were also substituted with phenyl or thienyl groups in the aza–BODIPYs. Photophysical, electrochemical, and computational studies were carried out. The absorption and emission spectra of aza–BODIPYs were significantly redshifted (≈100 nm) relative to the parent tetraphenylaza–BODIPY. Fluorescence studies suggested effective energy transfer (up to 93 %) from donor groups to the aza–BODIPY core in all of the compounds under study. Time‐dependent (TD)‐DFT studies indicated effective electronic interactions between energy donor groups and aza–dipyrrin unit in all the aza–BODIPYs studied. The HOMO–LUMO gap (ΔE) calculated from cyclic voltammetry data was found to be lower for six aza–BODIPYs relative to their corresponding aza–dipyrrins.  相似文献   

12.
A selective method for the core‐extension of boron dipyrromethene (BODIPY) with two annulated indole rings with exclusive syn‐connectivity is reported. The method is based on a regioselective nucleophilic substitution reaction of 2,3,5,6‐tetrabromoBODIPY with aryl amines, followed by palladium‐catalyzed intramolecular C?C coupling ring fusion. The unsymmetrical core‐expanded BODIPY with annulated indole and benzofuran rings was also synthesized by stepwise and regioselective nucleophilic substitution and palladium‐catalyzed intramolecular C?C coupling reaction. The diindole‐annulated BODIPY was unambiguously characterized by single‐crystal X‐ray analysis. The optical properties of the present core‐expanded BODIPYs were studied, revealing clearly red‐shifted absorption and emission bands and enhanced absorption coefficients upon annulation.  相似文献   

13.
A series of novel iodinated NO2‐substituted aza‐BODIPYs have been synthesized and characterized. Highly desirable photophysical and photochemical properties were induced in NO2‐substituted aza‐BODIPYs by iodination of the pyrrole rings. In particular, high values of singlet oxygen quantum yields (ΦΔ) ranging from 0.79 to 0.85 were measured. The photooxygenation process proceeds via a Type II mechanism under the experimental conditions applied. The compounds studied exhibited an absorption band within the so‐called “therapeutic window”, with λmax located between 645 nm to 672 nm. They were non‐fluorescent at room temperature with excited singlet‐state lifetimes within the picosecond range as measured by femtosecond transient absorption. Nanosecond laser flash photolysis experiments revealed T1→Tn absorption spanning from ca. 400 nm to ca. 500 nm and allowed determination of the triplet‐state lifetimes. The estimated triplet lifetimes (τT) in deaerated acetonitrile ranged between 2.74 μs and 3.50 μs. As estimated by CV/DPV measurements, all iodinated aza‐BODIPYs studied exhibited one irreversible oxidation and two quasi‐reversible reductions processes. Estimation of the EHOMO gave the value of ?6.06 to ?6.26 eV while the ELUMO was found to be located at ca. ?4.6 eV. Thermogravimetric (TGA) analysis revealed that iodinated aza‐BODIPYs were stable up to approximately 300 °C. All compounds studied exhibit high photostability in toluene solution.  相似文献   

14.
Thesynthesis of three red‐emitting and water‐soluble thienyl‐BODIPYs has beenachieved. The trimethyl(propargyl)ammonium group was chosen as a vector forwater solubility. One or two cationic arms were introduced either on the2‐position of the thienyl unit or on the 4‐position on the boron atom. Thesedyes have pronounced absorption around 600 nm and intense emission at 650 nmwith quantum yield of about 60% in water. Grafting of such BODIPYs via a flexible arm to BSA is veryefficient, allowing attachment of 1 to 30 labels in a controlled manner.  Very strong fluorescence (quantum yield 56%)without aggregation of the dye at a low loading ratio (1:5 BSA/label) in PBSbuffer is measured.  相似文献   

15.
Organic dyes with ethoxy‐substituted oligo‐phenylenevinylene as chromophores were synthesized for dye‐sensitized solar cells (DSSCs), and the detailed relationships between the dye structures, photophysical properties, electrochemical properties, and performances of DSSCs were described. The dye S3O showed broad IPCE spectra in the spectral range of 350–750 nm, and the dye S1P showed solar energy‐to‐electricity conversion efficiency (() of up to 4.23% under AM 1.5 irradiation (100 mW/cm2) in comparison with the reference Ru‐complex (N719 dye) with an η value of 5.90% under similar experimental conditions.  相似文献   

16.
The preparation of sensitizers for dye‐sensitized solar cells (DSSCs) represents an active area of research for both sustainability and renewable energy. Both RuII and OsII metal sensitizers offer unique photophysical and electrochemical properties that arise from the intrinsic electronic properties, that is, the higher propensity to form the lower‐energy metal‐to‐ligand charge‐transfer (MLCT) transition, and their capability to support chelates with multiple carboxy groups, which serve as a bridge to the metal oxide and enable efficient injection of the photoelectron. Here we present an overview of the synthesis and testing of these metal sensitizers that bear functional azolate chelates (both pyrazolate and triazolate), which are capable of modifying the metal sensitizers in a systematic and beneficial manner. Basic principles of the molecular designs, the structural relationship to the photophysical and electrochemical properties, and performances of the as‐fabricated DSSCs are highlighted. The success in the breakthrough of the synthetic protocols and potential applications might provide strong stimulus for the future development of technologies such as DSSCs, organic light‐emitting diodes, solar water splitting, and so forth.  相似文献   

17.
A new library of E‐ and C‐4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) derivatives has been synthesized through a straightforward protocol from commercially available BODIPY complexes, and a systematic study of the photophysical properties and laser behavior related to the electronic properties of the B‐substituent group (alkynyl, cyano, vinyl, aryl, and alkyl) has been carried out. The replacement of fluorine atoms by electron‐withdrawing groups enhances the fluorescence response of the dye, whereas electron‐donor groups diminish the fluorescence efficiency. As a consequence, these compounds exhibit enhanced laser action with respect to their parent dyes, both in liquid solution and in the solid phase, with lasing efficiencies under transversal pumping up to 73 % in liquid solution and 53 % in a solid matrix. The new dyes also showed enhanced photostability. In a solid matrix, the derivative of commercial dye PM597 that incorporated cyano groups at the boron center exhibited a very high lasing stability, with the laser emission remaining at the initial level after 100 000 pump pulses in the same position of the sample at a 10 Hz repetition rate. Distributed feedback laser emission was demonstrated with organic films that incorporated parent dye PM597 and its cyano derivative. The films were deposited onto quartz substrates engraved with appropriate periodical structures. The C derivative exhibited a laser threshold lower than that of the parent dye as well as lasing intensities up to three orders of magnitude higher.  相似文献   

18.
We report here the synthesis and electrochemical and photophysical properties of a series of easily prepared dipolar organic dyes and their application in dye-sensitized solar cells (DSSCs). For the six organic dyes, the molecular structures comprised a triphenylamine group as an electron donor, a cyanoacrylic acid as an electron acceptor, and an electron-deficient diphenylquinoxaline moiety integrated in the π-conjugated spacer between the electron donor and acceptor moieties. The incorporation of the electron-deficient diphenylquinoxaline moiety effectively reduces the energy gap of the dyes and broadly extends the spectral coverage. DSSCs based on dye 6 produced the best overall cell performance of 7.35?%, which translates to approximately 79?% of the intrinsic efficiency of the DSSCs based on the standard N719 dye under identical experimental conditions. The high performance of DSSCs based on dye 6 among the six dyes explored is attributed to the combined effects of high dye loading on a TiO(2) surface, rapid dye regeneration, and effective retardation of charge recombination.  相似文献   

19.
We successfully synthesized eight meso-aryl BODIPYs with 2,6-diethyl- or 1,2,6,7-tetraethyl substituents and characterized their photophysical properties. The steric hindrance resulting from the phenolic group in the meso-aryl moiety and the ethyl groups on the BODIPY core affected the synthesis of dipyrromethanes as an intermediate as well as the UV–Vis absorption and fluorescence emission of the BODIPYs due to the constrained rotation of the aryl ring. The potential use of the meso-hydroxyphenyl BODIPY as a pH sensor was also shown by the pH-dependent fluorescence emissions.  相似文献   

20.
New boron‐dipyrromethene (BODIPY) dyes linked to viologen are prepared and their photophysical and electrochemical properties are investigated. Both synthesized molecules have similar electronic absorption spectra with the absorption maximum localized at 517 and 501 nm for dye 1 and dye 2 , respectively. They exhibit well‐defined redox behavior, highlighting the presence of BODIPY and viologen subunits, with little perturbation of the redox potential of both subunits with respect to the parent compounds. Both dyes are heavily quenched by photoinduced electron transfer from the BODIPY to the viologen subunit. The transient absorption technique demonstrates that dye 2 forms the viologen radical within a timeframe of 7.1 ps, and that the charge‐separated species has a lifetime of 59 ps. Sustained irradiation of dye 2 in the presence of a tertiary amine allows for the accumulation of BODIPY–methyl‐4,4′‐bipyridinium (BODIPY–MV+), as observed by its characteristic absorption at 396 and 603 nm. However, dye 2 does not generate catalytic amounts of hydrogen under standard conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号