首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a three-component nanocomposite consisted of graphene, manganese ferrite and phosphotungstic acid (PTA) has been prepared. This composite, which is designated as Graphene/MnFe2O4@PTA, was synthesized through anchoring of PTA–imidazolium ionic liquid on magnetic graphene sheets. The structural and magnetic properties of the fabricated nanocomposite were studied by employing FT-IR, SEM, EDX, TEM, ICP, VSM, P-XRD and BET techniques. The synthesized magnetic nanocomposite was examined as an efficient and recyclable acidic catalyst for Mannich reaction under solvent-free conditions. The products of this reaction, which are an important class of potentially bioactive compounds, were obtained with good to excellent yields, and the catalyst could be readily recycled without any significant loss of its activity.  相似文献   

2.
Biodiesel containing almost no glycerol has been produced by coupling reaction carried out over K2CO3 supported by calcium oxide as solid base catalysts. The solid base catalysts synthesized by wet impregnation exhibit an exceedingly high activity in biodiesel production. It was found that the reaction time required for the highest yield of biodiesel, 99.2%, can be shortened to 30 min over K2CO3/Al2O3 under the optimum reaction conditions: 8: 1: 1 molar ratio of methanol/DMC/oil, 30 wt % K2CO3/Al2O3 catalyst, and 65°C reaction temperature. Solid basic catalysts examined in the study were characterized by BET surface area, XRD, CO2-TPD, and SEM techniques. The strong interaction between K2CO3 and the support yields a new basic active site, which can be probably responsible for the high activity of K2CO3/Al2O3.  相似文献   

3.
A novel efficient procedure has been developed for the preparation of acylals in high yields by reaction of the corresponding aldehydes with acetic anhydride in the presence of Al(HSO4)3 as catalyst under mild (room temperature) solvent-free conditions. Published in Russian in Zhurnal Organicheskoi Khimii, 2007, Vol. 43, No. 6. pp. 855–857. The text was submitted by the authors in English.  相似文献   

4.
Summary. The nitration of aromatic compounds was carried out in the presence of divanadium-substituted molybdophosphoric acid, H5PMo10V2O40, as catalyst and a mixture of nitric acid and acetic anhydride as nitrating agent. In the presence of this heteropolyacid the ortho- and para-nitro compounds were obtained in good to excellent yields under mild reaction conditions.  相似文献   

5.
A simple and concise method catalyzed by nanocrystalline ZnZr4(PO4)6 ceramics has been reported for the synthesis of a series of trans-2-benzoyl-3-(aryl)-2H-furo[3,2-c]chromen-4(3H)-ones using a multicomponent reaction of 2,4′-dibromoacetophenone, benzaldehydes and 4-hydroxycoumarin under microwave irradiation. This method provides several advantages including easy workup, excellent yields, short reaction times, using of microwave as clean method, recoverability of the catalyst and little catalyst loading.  相似文献   

6.
For the first time, the organic salt Na2EDTA was used as a catalyst for an effective and facile preparation of spiro-4H-pyrans via single-pot three-component condensation of isatin/acenaphthoquinone/ninhydrin, malononitrile, and CH-acids through Knoevenagel–Michael–annulation sequence. This new protocol employing Na2EDTA, which is a green, recyclable, and inexpensive catalyst, offers advantages such as solvent-free and highly efficient reaction conditions, short reaction times (10–15 min), easy work-up and high yields which make it more economic than other environmentally synthetic methods.  相似文献   

7.
Summary. Alum (KAl(SO4)2 · 12H2O) is used as an efficient catalyst in the Pechmann condensation of phenol derivatives with β-keto esters leading to the formation of coumarins in excellent yields under solvent-free conditions. This methodology offers significant improvements for the synthesis of coumarins with regard to the yield of products, simplicity in operation, and green aspects by avoiding toxic catalysts and solvents.  相似文献   

8.
A novel and green procedure for benzaldehyde synthesis by potassium ferrate oxidation of benzyl alcohol employing zeolite catalysts was studied. The prepared oxidant was characterized by SEM and XRD. The catalytic activity of various solid catalysts was studied using benzyl alcohol as a model compound. USY was found to be a very efficient catalyst for this particular oxidation process. Benzaldehyde yields up to 96.0% could be obtained at the following optimal conditions: 0.2 mL of benzyl alcohol, 4 mmol of K2FeO4, 0.5 g of USY zeolite; 20 mL of cyclohexene, 0.3 mL of acetic acid (36 wt %), 30°C temperature, 4 h reaction time.  相似文献   

9.
In this work, the condensation of aromatic aldehydes with different two-substituted aniline catalyzed by NH3(CH2)5NH3BiCl5 as heterogeneous and recyclable catalyst was reported. It was demonstrated that NH3(CH2)5NH3BiCl5 can act as an efficient and active catalyst and is reusable for six runs without a significant loss of their catalytic activity. Simple preparation of the catalyst, high catalytic activity and good reusability are noteworthy advantages of this catalytic system in the synthesis of benzoxazole, benzimidazole and benzothiazole heterocycles at room temperature under solvent-free conditions.  相似文献   

10.
Porous CeO2 nanorod has been used as efficient and recyclable heterogeneous catalyst for the synthesis of highly functionalized imino-pyrrolidine-thiones via the reaction of aromatic aldehyde (especially one bearing an electron-donating group), malononitrile, isocyanide and unactivated weakly acidic heterocyclic thiophenol. The high catalytic efficiency of porous CeO2 nanorod in this reaction was discussed preliminarily based on their morphology and structure.  相似文献   

11.
Fe@Fe2O3 core-shell nanowires were synthesized via the reduction of Fe3+ ions by sodium borohydride in an aqueous solution with a subsequent heat treatment to form Fe2O3 shell and employed as a cathode catalyst for non aqueous Li-air batteries. The synthesized core-shell nanowires with an average diameter of 50–100 nm manifest superior catalytic activity for oxygen evolution reaction (OER) in Li-O2 batteries with the charge voltage plateau reduced to ~3.8 V. An outstanding performance of cycling stability was also achieved with a cutoff specific capacity of 1000 milliampere hour per gram over 40 cycles at a current density of 100 mA g?1. The excellent electrochemical properties of Fe@Fe2O3 as an O2 electrode are ascribed to the high surface area of the nanowires’ structure and high electron conductivity. This study indicates that the resulting iron-containing nanostructures are promising catalyst in Li-O2 batteries.  相似文献   

12.
A novel nanomagnetic composite heteropolyacid immobilized chitosan/Fe3O4 was prepared via a facile one-pot synthetic approach. This magnetically recoverable nanocatalyst, H3PMo12O40/chitosan/Fe3O4 (PMo/chit/Fe3O4), was fully characterized by XRD, FTIR, SEM and EDX analysis methods. A rapid, efficient and the chemoselective synthesis of different pyrano-pyrazole derivatives was achieved in excellent yields via a one-pot four-component reaction in the presence of catalytic amount of PMo/Chit/Fe3O4.  相似文献   

13.
The potential of heteropoly acid H3PW12O40 to catalyze the hydrolysis of cellulose to glucose under hydrothermal conditions was explored. This technology could contribute to sustainable societies in the future by using cellulose biomass. A study to optimize the reaction conditions, such as the amount of catalyst, reaction time, temperature, and the amount of cellulose used, was performed. A remarkably high yield of glucose (50.5%) and selectivity higher than 90% at 453 K for 2 h with a mass ratio of cellulose to H3PW12O40 of 0.42 were achieved. This was attributed to the high hydrothermal stability and the excellent catalytic properties, such as the strong Brønsted acid sites. This homogeneous catalyst can be recycled for reuse by extraction with diethyl ether. The results illustrate that H3PW12O40 is an environmentally benign acid catalyst for the hydrolysis of cellulose.  相似文献   

14.
Synthesis of 14-aryl or alkyl-14H-dibenzo[a,j]xanthenes using nano-TiO2 as eco-friendly and efficient catalyst is reported. Short reaction times, high yields, a clean process, simple methodology, easy work-up and green conditions are advantages of this protocol.  相似文献   

15.
Sumitomo Chemical has developed a low energy consuming and green process for the catalytic oxidation of HCl to Cl2, especially when compared with the electrolysis process. The RuO2/rutile-TiO2 catalyst has high catalytic activity and thermal stability due to ultra-fine RuO2 crystallites that cover the surface of the TiO2 primary particles with strong interaction. In addition, the silica modified RuO2/rutile-TiO2 catalyst shows higher thermal stability by preventing the RuO2 sintering due to using dispersed SiO2 particles. With these catalysts, high reaction rates required for industrial applications are achieved, even at low temperatures.  相似文献   

16.
An efficient and economic system for the synthesis of N-2-aryl-substituted 1,2,3-triazoles in the presence of CuFe2O4 was developed. The corresponding products can be obtained in good to excellent yields. It is interesting to note that the catalyst could be reused for five consecutive trials without significant decreases in its activity.  相似文献   

17.
It was studied the influence of gold addition on physico-chemical properties and catalytic activity of bimetallic Ni-Au/Al2O3 catalyst in partial oxidation of methane (POM). The reduction behavior in hydrogen, XRD crystal structure, XPS spectra and POM catalytic activity were investigated. The reduction of Ni-Au catalyst is a prerequisite condition to catalyze POM reaction. The formation of Ni-Au alloy during high temperature reduction in hydrogen and also in the conditions of POM reaction was experimentally proved. The addition of gold to Ni/Al2O3 system improves catalyst stability and activity in POM reaction.  相似文献   

18.
A presulphided treatment was applied to the oxidic Ni-Mo-Zn/Al2O3 catalyst (nickel catalyst) in order to avoid thermal run-away during initiation of the hydrogenation of pyrolysis gasoline. The physico-chemical properties of the prepared oxidic nickel catalyst, the reduced and passivated (RP) nickel catalyst and the sulphided (RPS) nickel catalyst were characterised using N2 adsorption-desorption, X-ray diffraction, temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS). The TPR results showed that the reducibility of the RP Ni-Mo-Zn/Al2O3 catalyst was improved over the oxidic nickel catalyst. The XPS spectra confirmed the binding energy of the RPS nickel catalyst to be higher than that of the oxidic nickel catalyst. The catalytic performance was evaluated on a fixed-bed reactor (reaction temperature between 30 °C and 70°C, at 2.8 MPa of total pressure and weight hourly space velocity of 2.0 h?1, the volume of H2/pyrogasoline = 200: 1). The rising temperature of the RPS nickel catalyst was almost 20°C lower than that of the oxidic nickel catalyst during the initial stage of the hydrogenation reaction. The results indicated that the RPS nickel catalyst exhibited better stability than the oxidic nickel catalyst during the start-up period, thereby providing a better selectivity in long-term operation.  相似文献   

19.
Ce-Ti-W-O x catalysts were prepared and applied to the NH3-selective catalytic reduction (SCR) reaction. The experimental results showed that the Ce-Ti-W-O x catalyst prepared by the hydrothermal method exhibited higher NO conversion than those synthesised via the sol-gel and impregnating methods, while the optimal content of WO3 and molar ratio of Ce/Ti were 20 mass % and 4: 6, respectively. Under these conditions, the catalyst exhibited the highest level of catalytic activity (the NO conversion reached values higher than 90 %) across a wide temperature range of 225–450°C, with a range of gas hourly space velocity (GHSV) of 40000–140000 h?1. The catalyst also exhibited good resistance to H2O and SO2. The influences of morphology, phase structure, and surface properties on the catalytic performance were investigated by N2 adsorption-desorption measurement, XRD, XPS, H2-TPR, and SEM. It was found that the high efficiency of NO removal was due to the large BET surface area, the amorphous surface species, the change to element valence states, and the strong interaction between Ce, Ti, and W.  相似文献   

20.
Hydrogen gas as a clear energy resource was found to be largely bubbled from a H2O/H2O2/MnWO4 system. MnWO4 powder was fabricated by an aqueous reaction method. The powder was characterized with X-ray diffraction (XRD), transmission electron microscope (TEM), and X-ray photoelectron spectrometry (XPS). The efficiency of the hydrogen generation increases with an increase in initial pH in the appropriate range, H2O2 proportion, MnWO4 proportion, and intensity of light resource. Calcining at 400 °C for 1 h can make the MnWO4 powder synthesized by an aqueous reaction more effective for H2 generation and more stable in higher initial pH. The MnWO4 catalyst shows a long-term stability for photocatalytic H2 generation. A mechanism was suggested for the hydrogen generation from the H2O/H2O2/MnWO4 system together with XPS analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号