首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Density functional theory calculations were performed to understand the electronic properties of C24, B12N12, B12P12, and (6, 0) BNNT interacted with N2O molecule in the presence and absence of an external electric field using the B3LYP method and 6-31G** basis set. The adsorption of N2O from O-side on the surface of (6, 0) BNNT has high sensitivity in comparison with B12N12 nano-cage. The adsorption energy of N2O (O-side) on the sidewalls of B12N12 and BNNT in the presence of an electric field are ?21.01 and ?15.48 kJ mol?1, respectively. Our results suggest that in the presence of an electric field, the B12N12 nano-cage is the more energetically notable upon the N2O adsorption than (6, 0) BNNT, C24, and B12P12. Whereas, our results indicate that the electronic property of BNNT is more sensitive to N2O molecule at the presence of an electric field than B12N12 nano-cage. It is anticipated that BNNT could be a favorable gas sensor for the detection of N2O molecule.  相似文献   

2.
HO. radical is an aggressive reagent to abstract hydrogen from diverse substitutes and lead them to degradation, however, in reaction of active oxygen species with lignins, complex phenolic polymers, in dispersed lignocellulose such as pulp for environment-benign delignification, HO. radicals should be eliminated as more as possible to prevent cellulose from unfavorably concomitant degradation. A reaction system of O3 is constructed under UV laser flash irradiation, and HO. radicals are controlled efficiently by it. A new mechanism is proposed, for the first time, that O. radicals generated from reaction of O3 with UV laser flash irradiation might be the contributor to scavenge HO. radicals.  相似文献   

3.
The interaction of acetonitrile with superoxide radicals over a polycrystalline TiO2 (Degussa P25) surface was investigated using continuous-wave electron paramagnetic resonance (cw-EPR) spectroscopy. For the first time, a thermally unstable radical intermediate has been observed following the low-temperature exposure of acetonitrile to surface-adsorbed O2 radicals. The radical intermediate has been identified as an [O2···CH3CN] type surface complex characterised by the g values of g 1 = 2.031, g 2 = 2.010 and g 3 = 2.003. This surface complex is thermally unstable and decomposes at temperatures of T > 240 K. A second oxygen-centred species was also observed following acetonitrile adsorption, characterised by the spin Hamiltonian parameters of g 1 = 2.028, g 2 = 2.010, g 3 = 2.004, A 1 = 1.2 mT, A 2 = 1.0 mT and A 3 = 1.0 mT, and was assigned to a hydroperoxy radical (HO2).  相似文献   

4.
The gas‐phase decomposition of the α‐hydroxy methylperoxy radical has been theoretically examined, and the results provide insight into a new source of the hydroperoxy radical (HO2) in the troposphere. Bimolecular peroxy decomposition is promoted by the red‐light or near‐IR radiation excitation. The calculations suggest for the first time, an important chemical role for the H2O?HO2 radical complex that exist in significant abundance in the troposphere. In particular, the reaction of organic peroxy radicals with the HO2 radical and the H2O?HO2 radical complex represent an autocatalytic source of atmospheric HO2. This reaction is a new example of red‐light‐initiated atmospheric chemistry that may help in understanding the discrepancy between the observed and measured levels of the HOx at sunrise.  相似文献   

5.
Thiol-functionalized Fe3O4/SiO2 microspheres (Fe3O4/SiO2-SH) with high saturation magnetization (69.3 emu g–1), superparamagnetism, and good dispersibility have been prepared by an ethylene glycol reduction method in combination with a modified Stöber method. The as-prepared composite magnetic spheres are characterized with fourier transform infrared spectroscopy (FT-IR), zeta potential, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and superconducting quantum interference magnetometer, and tested in separation of Au(III) ions from aqueous solutions. The data for Au(III) adsorption on Fe3O4/SiO2-SH are analyzed with the Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models, and the pseudo-first-order, pseudo-second-order, and intraparticle diffusion kinetics models. The adsorption behaviors of Au(III) on Fe3O4/SiO2-SH follow the Langmuir isotherm model, and the adsorption process conforms to the pseudo-second-order kinetic model. The maximum adsorption capacity of Au(III) on Fe3O4/SiO2-SH is 43.7 mg g–1. Acetate anions play an important role yet Cu(II) ions have little interference in the adsorption of Au(III) on the adsorbent. A satisfactory recovery percentage of 89.5% is acquired by using an eluent with 1 M thiourea and 5% HCl, although thiols have a high affinity to Au(III) ions based on the hard-soft acid-base (HSAB) theory by Pearson.  相似文献   

6.
A discharge-flow apparatus with resonance fluorescence and chemiluminescence detection has been used to monitor O2(b 1σ) production from several reactions of the HO2 radical at 300 K and 1-torr total pressure. O2(b), HO2, and OH were observed when F atoms were added to H2O2 in the gas phase. Signal strengths of O2(b) were proportional to initial concentrations of H2O2 and HO2. These observations were analyzed by using a simple three step mechanism and a more complete computer simulation with 22 reaction steps. The results indicate that the F + HO2 reaction yields O2(b) with an efficiency of (3.6 ± 1.4) × 10?3. By monitoring [O2(b)] and [HO2] upon addition of an excess second reactant to HO2, O2(b) yields from the reactions of HO2 with O, Cl, D, H, and OH were found to be <1 × 10?2, <5 × 10?4, <2 × 10?3, <8 × 10?3, and <1 × 10?3, respectively. Yields of O2(b) from the HO2 ± HO2 reaction were found to be less than 3 × 10?2.  相似文献   

7.
It is demonstrated by ESR measurements that O 2 (CO + O2) radical anions result from CO + O2 adsorption on the oxidized surface of CeO2. These radical anions are stabilized in the coordination sphere of Ce4+ cations located in isolated and associated anionic vacancies. This reaction shows an activation behavior determined by CO adsorption. The variation of O 2 (CO + O2) concentration with CO adsorption temperature suggests that surface carbonates and carboxylates participate in this reaction. In the (0.5– 10.0)%CeO2/ZrO2 system, O 2 forms on supported CeO2 and is stabilized on Ce4+ and Zr4+ cations. The stability of O 2 -Ce4+ complexes is lower on supported CeO2 than on unsupported CeO2, indicating a strong interaction between the cerium cations and the support.__________Translated from Kinetika i Kataliz, Vol. 46, No. 3, 2005, pp. 423–429.Original Russian Text Copyright © 2005 by Il’ichev, Kuli-zade, Korchak.  相似文献   

8.
The reactions of HO2 with FCHO and ClCHO have been theoretically investigated by combining beyond‐CCSD(T) electronic structure benchmarks, validated density functional theory, and canonical variational transition state theory with small‐curvature tunneling, coupled‐torsions anharmonicity, and high‐frequency anharmonicity. This investigation explores three different reaction mechanisms: radical addition plus a hydrogen transfer, radical addition, and hydrogen abstraction. The calculated results show that the dominant reaction pathway is the terminal oxygen atom of HO2 added to the carbon atom of XCHO (X = F, Cl) and simultaneously the hydrogen atom of HO2 transferred to the oxygen atom of the C=O group in XCHO. The reaction barriers of the other reaction pathways are so high that these processes are negligible in the atmosphere. Although the barrier height of the dominant reaction pathway in the HO2 + FCHO reaction is 0.61 kcal/mol higher than that of the corresponding HO2 + ClCHO reaction, the HO2 + FCHO reaction is faster than the HO2 + ClCHO reaction because the variational effects of HO2 + ClCHO is more obvious than that of the HO2 + FCHO. The present results show that the HO2 + FCHO reaction may be important in the atmosphere. The present results should be useful in evaluating the atmospheric fate of XCHO (X = F, Cl).  相似文献   

9.
In this work, we report the synthesis of magnetic sulfur-doped Fe3O4 nanoparticles (Fe3O4:S NPs) with a novel simple strategy, which includes low temperature multicomponent mixing and high temperature sintering. The prepared Fe3O4:S NPs exhibit a much better adsorption performance towards Pb(II) than bare Fe3O4 nanoparticles. FTIR, XPS, and XRD analyses suggested that the removal mechanisms of Pb(II) by Fe3O4:S NPs were associated with the process of precipitation (formation of PbS), hydrolysis, and surface adsorption. The kinetic studies showed that the adsorption data were described well by a pseudo second-order kinetic model, and the adsorption isotherms could be presented by Freundlich isotherm model. Moreover, the adsorption was not significantly affected by the coexisting ions, and the adsorbent could be easily separated from water by an external magnetic field after Pb(II) adsorption. Thus, Fe3O4:S NPs are supposed to be a good adsorbents for Pb(II) ions in environmental remediation.  相似文献   

10.
Summary Thermogravimetry (TG) and Me2CO adsorption measurements for flexible porous crystalline coordination polymers with 2-dimensional (2-D) frameworks, {[Co(NCS)2(3-pia)2]·4Me2CO}n (1⊃4Me2CO, 3-pia=N-(3-pyridyl)isonicotinamide), were carried out. Taking advantages of capability of hydrogen bonding of amide groups for a dynamic properties, 1⊃4Me2CO show crystal (non-porous)-to-crystal (porous) structural rearrangement in Me2CO adsorption/desorption processes. The activation energy for the Me2CO desorption process of 1⊃4Me2CO was obtained using Flynn-Wall-Ozawa’s (FWO) method. The Me2CO adsorption isotherms on 1 have a threshold pressure (Pth) for abrupt accommodation of Me2CO molecules, which is regarded as the equilibrium pressure for the inclusion reaction of Me2CO  相似文献   

11.
The adsorption of reactant mixtures is quantitatively and qualitatively different from the adsorption of the individual reactants. Thus, O2 is almost not adsorbed on ZrO2; however, a considerable concentration of molecular oxygen was detected among the products of desorption after the adsorption of a mixture of NO + O2 and the total amount of desorbed molecules was greater by a factor of 10 than their total amount after the individual adsorption of NO and O2. Among the qualitative differences is the formation of the O2- radical anion on the surface only upon the adsorption of the mixture of NO + O2. Similarly, the number of desorbed molecules upon the simultaneous adsorption of C3H6, NO, and O2 was much greater than that upon their individual adsorption; this is related to the formation of paramagnetic and nonparamagnetic NO2–hydrocarbon complexes on the surface, which contained the NO2 group and a hydrocarbon fragment.  相似文献   

12.
At room temperature, the reaction of 2-[4,5-bis(methylsulfanyl)-1,3-dithiol-2-ylidene-]-4,5-bis(2-cyanoethylsulfanyl)-1, 3-dithiole (CM-TTF) with mercury chloride resulted in a black radical salt constructed by dimeric cations and chloromercurate anions in formula (CM-TTF)2Hg2Cl6. The S···S stacking of 3.289(3) and 3.334(3) Å within the TTF dimer are very strong in comparing with those of other TTF radical salts. Effective C···C stacking (3.349(10) Å) was also found within the dimeric structure.  相似文献   

13.
Summary The adsorption of 99Tc on the adsorbers Fe, Fe2O3 and Fe3O4 was studied by batch experiments under aerobic and anoxic conditions. The effects of pH and CO32- concentration of the simulated ground water on the adsorption ratios were also investigated, and the valences of Tc in solution after the adsorption equilibrium were studied by solvent extraction. The adsorption isotherms of TcO4- on the adsorbers Fe, Fe2O3 and Fe3O4 were determined. Experimental results have shown that the adsorption ratio of Tc on Fe decreases with the increase of pH in the range of 5-12 and increases with the decrease of the CO32- concentration in the range of 10-8M-10-2M. Under aerobic conditions, the adsorption ratios of 99Tc on Fe2O3 and Fe3O4 were not influenced by pH and CO32-concentration. When Fe was used as adsorbent, Tc existed mainly in the form of Tc(IV) after equilibrium and in the form of Tc(VII) when the adsorbent was Fe2O3 or Fe3O4 under aerobic conditions. The adsorption ratios of Tc on Fe, Fe2O3 and Fe3O4 decreased with the increase of pH in the range of 5-12 and increased with the decrease of the CO32- concentration in the range of 10-8M-10-2M under anoxic conditions. Tc existed mainly in the form of Tc(IV) after equilibrium when Fe, Fe2O3 and Fe3O4 was the adsorbent under anoxic conditions. The adsorption isotherms of TcO4- on the adsorbers Fe, Fe2O3 and Fe3O4 are fairly in agreement with the Freundlich’s equation under both aerobic and anoxic conditions.  相似文献   

14.
Minimum energy pathways of propane oxidative dehydrogenation to propene and propanol on supported vanadium oxide catalyst VO x /TiO2 were studied by periodic discrete Fourier transform (DFT) using a surface oxygen radical as the active site. The propene formation pathway was shown to consist of two consecutive hydrogen abstraction steps. The first step includes Cβ–H bond activation of propane followed by the formation of a surface hydroxyl group V–O t H and a propyl radical n-C3H7. This step with the activation energy E* = 0.56 eV (54.1 kJ/mol) appears to be rate-determining. The second step involves the reaction of the bridging O b oxygen atom with the methylene C–H bond of propyl radical n-C3H7 followed by the formation of a hydroxylated surface site HO t –V4+–O b H and propene. The initial steps of the C–H bond activation during propane conversion to propanol and propene by ODH on V5+–(O t O b )? active sites are identical. The obtained results demonstrate that participation of surface oxygen radicals as the active sites of propane ODH makes it possible to explain relatively low activation energies observed for this reaction on the most active catalysts. The presence of very active radical species in low concentration seems to be the key factor for obtaining high selectivity.  相似文献   

15.
Density functional theory calculations were carried out to investigate the adsorption behaviors of O3 molecules on the undoped and N-doped TiO2/MoS2 nanocomposites. With the inclusion of vdW interactions, which correctly account the long-range dispersion energy, the adsorption energies and final geometries of O3 molecules on the nanocomposite surfaces were improved. For O3 molecules on the considered nanocomposites, the binding sites were located on the fivefold coordinated titanium atoms of the TiO2 anatase. The structural properties of the adsorption systems were examined in view of the bond lengths and bond angles. The variation of electronic structures was also discussed in view of the density of states, molecular orbitals and distribution of spin densities. The results suggest that the adsorption of the O3 molecule on the N-doped TiO2/MoS2 nanocomposite is more favorable in energy than that on the pristine one, indicating that the N-doped nanocomposite has higher sensing capability than the pristine one. This implies that the N-doped TiO2/MoS2 nanocomposite would be an ideal O3 gas sensor. However, our calculations thus provide a theoretical basis for the potential applications of TiO2/MoS2 nanocomposites as efficient O3 sensors, leading to very interesting results in the context of air quality measurement.  相似文献   

16.
Electron pulse radiolysis at ?298°K of 2 atm H2 containing 5 torr O2 produces HO2 free radical whose disappearance by reaction (1), HO2 + HO2 →H2O2 + O2, is monitored by kinetic spectrophotometry at 230.5 nm. Using a literature value for the HO2 absorption cross section, the values k1 = 2.5×10?12 cm3/molec·sec, which is in reasonable agreement with two earlier studies, and G(H) G(HO2) ?13 are obtained. In the presence of small amounts of added H2O or NH3, the observed second-order decay rate of the HO2 signal is found to increase by up to a factor of ?2.5. A proposed kinetic model quantitatively explains these data in terms of the formation of previously unpostulated 1:1 complexes, HO2 + H2O ? HO2·H2O (4a) and HO2 + NH3? HO2·NH3 (4b), which are more reactive than uncomplexed HO2 toward a second uncomplexed HO2 radical. The following equilibrium constants, which agree with independent theoretical calculations on these complexes, are derived from the data: 2×10?20?K4a?6.3 × 10?19 cm3/molec at 295°K and K4b = 3.4 × 10?18 cm3/molec at 298°K. Several deuterium isotope effects are also reported, including kH/kD = 2.8 for reaction (1). The atmospheric significance of these results is pointed out.  相似文献   

17.
The photolysis of strong alkaline (pH>12.7) solutions of H2O2 yields O·−, which in the presence of molecular oxygen forms the ozonide radical ion, O3·−. A detailed kinetic study on the reaction mechanisms involved during formation and decay of O3·− radical ions in these solutions, in the presence and absence of added O·−/HO· scavengers is reported. In order to obtain a complete interpretation of the experimental data, kinetic computer simulations were done using a complete set of reactions. A very good agreement between experimental and computer simulated data is obtained. The following simplified mechanism accounts for the observed first-order decay of O3·− in alkaline hydrogen peroxide solutions: O·− + O2 → O3·− O3·− → O·− + O2 O·− + S → OH· + S → HO· + HO2 → O2·− + H2O O·− + HO2 → O2·− + HO with S: O·−/HO· scavengers. © 1997 John Wiley & Sons, Inc.  相似文献   

18.
The adsorption of small molecules NO, NH3 and H2O on V2O5/TiO2 catalysts is studied with the semiempirical SCF MO method MSINDO as pre-stage for the selective catalytic reduction of NO. The mixed catalyst is represented by hydrogen-terminated cluster models. The local arrangement of the cluster atoms is in accordance with available experimental information. Partial relaxation of cluster atoms near the adsorption sites is taken into account. Calculated adsorption energies are compared with experimental literature data. Rapid convergence of computed properties with cluster size is observed. A possible reaction mechanism for the catalytic reduction of NO with NH3 and O2 is outlined.  相似文献   

19.
In this study, regular-shaped magnetic-activated carbon nanocomposite (m-Fe3O4@ACCs) was synthesized and characterized with X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and the vibrating sample magnetometer (VSM) and was used as adsorbents for the removal of nitrotoluene compounds (NTCs) from water and industrial wastewater. The effective parameters on adsorption process, such as solution pH, shaking speed, contact time, and adsorbent dosage were optimized and the optimum amounts were 7 300 rpm, 10 min, and 1.2 g L–1, respectively. The contact time and adsorbent dosage are dependent parameters and hence were studied simultaneously. The results showed no significant loss in the adsorption capacity, and the adsorption efficiency of m-Fe3O4@ACCs could still be 90% in the 9th cycle. The equilibrium adsorption isotherm followed the Langmuir isotherm model describes the monolayer adsorption of NTCs on m-Fe3O4@ACCs, and the maximum adsorption capacities (qm) for 2-nitrotolouene, 2,6-dinitrotoluene, 2,4-dinitrotoluene, and 3,4-dinitrotoluene were found to be 144.93, 142.86, 166.67, and 153.85 mg g?l, respectively. The proposed process was successfully applied for the removal of NTCs from tap water and nitration process wastewater.  相似文献   

20.
The 4-sulfonylcalix[6]arene modified Fe3O4 (MFS) was characterized by FT-IR, SEM, VSM, TGA, etc., which showed that its saturation magnetization was 64.99 emu g?1 with the particle size 10–40 nm. The maximum adsorption efficiency by MFS for 2.5 mg L?1 U(VI) solution amounted to 94.39%, which was higher than that by Fe3O4 (65.22%) under its optimum adsorption conditions. The adsorption of MFS and Fe3O4 were both followed the pseudo-second order model and the Langmuir isotherm model. The Gibbs free energy change and enthalpy change revealed that the adsorption of U(VI) by MFS was a spontaneous and endothermic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号