首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel Zn2+ ion‐selective PVC based coated graphite electrodes were fabricated using the ionophores N‐((1H‐indol‐3‐yl)methylene)thiazol‐2‐amine (I1), N‐((1H‐indol‐3‐yl)methyl)‐thiazol‐2‐amine (I2) and 1‐((1H‐indol‐3‐yl)methylene)urea (I3). Their potentiometric performance was examined in dependence of the addition of plasticizers and anion excluders and compared. It is found that the coated graphite electrode with the composition I1:KTpClPB:o‐NPOE:PVC=9 : 1.5 : 51 : 38.5 is the best with respect to the wide working concentration range (4.2×10?8–1.0×10?1 mol L?1), low detection limit (1.6×10?8 mol L?1) and wide pH range of 3.0–8.0. The proposed electrode was successfully applied to quantify Zn2+ in various environmental, biological and medicinal plant samples and used as indicator electrode.  相似文献   

2.
3‐Methyl‐1‐phenyl‐4‐((2‐phenyl‐1H‐indol‐3‐yl)methylene)‐1H‐pyrazol‐5(4H)‐ones (5a‐i) was prepared by the condensation reaction of different 3‐formyl‐2‐phenylindole derivatives (2a‐i) and 3‐methyl‐1‐phenyl‐2‐pyrazoline‐5‐one in quantitative yield by applying various green synthetic methods as grinding, microwave irradiation using different catalysts under solvent‐free mild reaction conditions with high product yields. The structures of the synthesized compounds were characterized on the basis of elemental analysis, infrared, 1HNMR, 13C NMR, and mass spectral data. The synthesized compounds were screened for free radical scavenging, antimicrobial, and DNA cleavage activities. Most of the tested compounds belonging to the 3‐methyl‐1‐phenyl‐4‐((2‐phenyl‐1H‐indol‐3‐yl)methylene)‐1H‐pyrazol‐5(4H)‐ones series exhibited promising activities.  相似文献   

3.
A simple and efficient process for the synthesis of novel heterocycles starting from thiocarbohydrazide was reported. Reaction of 2‐acetylbenzofuran ( 1 ) and thiocarbohydrazide ( 2 ) in ethanol containing acetic acid produced the corresponding thiocarbohydrazone 3 in 86% yield. Reaction of 3 and isatin ( 4 ) gave N,2‐bis(2‐oxoindolin‐3‐ylidene)hydrazine‐1‐carbothiohydrazine ( 6 ) in 65% yield, rather than the expected product, 3‐[(1‐methyl‐1‐benzofur‐2‐ylmethylidene)amino]‐1‐{[(3Z)‐2‐oxo‐2,3‐dihydro‐1H‐indol‐3‐ylidene]amino}thiourea ( 5 ). Reaction of 2‐((3‐(benzofuran‐2‐yl)‐1‐phenyl‐1H‐pyrazol‐4‐yl)methylene)hydrazine carbothioamide ( 9 ) and chloroacetic acid or hydrazonoyl chloride 11 in basic medium gave (Z)‐2‐((E)‐((3‐(benzofuran‐2‐yl)‐1‐phenyl‐1H‐pyrazol‐4‐yl)methylene)hydrazono)thiazolidin‐4‐one ( 10 ) or 2‐((E)‐2‐((3‐(benzofuran‐2‐yl)‐1‐ phenyl‐1H‐pyrazol‐4‐yl)methylene)hydrazinyl)‐4‐((E)‐(4‐fluorophenyl)diazenyl)‐5‐methylthiazole ( 12 ) in 62% or 74%, respectively.  相似文献   

4.
Poly(vinyl chloride)‐based membranes of salen ligands, 2‐((E)‐((1R,2S)‐2‐((E)‐5‐tert‐butyl‐2‐hydroxybenzylideneamino)cyclohexylimino)methyl)‐4‐tert‐butyl phenol (S1) and 2‐((E)‐((1R,2S)‐2‐((E)‐3,5‐di‐tert‐butyl‐2‐hydroxybenzylideneamino)cyclohexylimino)methyl)‐4,6‐di‐tert‐butylphenol (S2) were fabricated and explored as cobalt(II) selective electrodes. The performance of the polymeric membrane electrode (PME) and coated graphite electrode (CGE) were compared and it was observed that CGE showed a wide working concentration range of 1.1×10?8 to 1.0×10?1 mol L?1 with a limit of detection of 7.0×10?9 mol L?1 exhibiting the Nernstian slope 29.6 mV/decade of activity in the pH range 3.0–9.0. It was used for the determination of cobalt(II) ions in water, soil, beer, pharmaceutical samples and medicinal plants and would be used as an indicator electrode in potentiometric titration with EDTA.  相似文献   

5.
Polycyclic chalcone‐containing polyacrylamides, namely, poly ((N‐(4‐((E)‐3‐(naphthalen‐6‐yl)‐3‐oxoprop‐1‐enyl) phenyl) acrylamide), poly((N‐(4‐((E)‐3‐(1H‐indol‐3‐yl)‐3‐oxoprop‐1‐enyl) phenyl) acrylamide), and poly((N‐(4‐((E)‐3‐oxo‐3‐(10H‐phenothiazin‐8‐yl) prop‐1‐enyl) phenyl) acrylamide), were synthesized by Claisen–Schmidt condensation reaction, followed by ultrasonic irradiation reduction. The synthesized polymers were characterized by Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance, and 13C nuclear magnetic resonance spectroscopic technique. The newly synthesized polymers have been screened for antibacterial and antifungal activities by using resazurin reduction assay method, and the resulting polyacrylamides showed promising activity against various tested bacteria and fungi. Among the polymers, poly((N‐(4‐((E)‐3‐oxo‐3‐(10H‐phenothiazin‐8‐yl) prop‐1‐enyl) phenyl) acrylamide) and poly((N‐(4‐((E)‐3‐(1H‐indol‐3‐yl)‐3‐oxoprop‐1‐enyl) phenyl) acrylamide) exhibited better antifungal and antibacterial activities than poly ((N‐(4‐((E)‐3‐(naphthalen‐6‐yl)‐3‐oxoprop‐1‐enyl) phenyl) acrylamide), whereas all the polymers do not show any sign of antibacterial and antifungal activity against Streptococcus faecalis and Candida glabrata. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The synthesis and characterization of two new 1,3,5‐triazines containing 2‐(aminomethyl)‐1H‐benzimidazole hydrochloride as a substituent are reported, namely, 2‐{[(4,6‐dichloro‐1,3,5‐triazin‐2‐yl)amino]methyl}‐1H‐benzimidazol‐3‐ium chloride, C11H9Cl2N6+·Cl? ( 1 ), and bis(2,2′‐{[(6‐chloro‐1,3,5‐triazine‐2,4‐diyl)bis(azanediyl)]bis(methylene)}bis(1H‐benzimidazol‐3‐ium)) tetrachloride heptahydrate, 2C19H18ClN92+·4Cl?·7H2O ( 2 ). Both salts were characterized using single‐crystal X‐ray diffraction analysis and IR spectroscopy. Moreover, the NMR (1H and 13C) spectra of 1 were obtained. Salts 1 and 2 have triclinic symmetry (space group P) and their supramolecular structures are stabilized by hydrogen bonding and offset π–π interactions. In hydrated salt 2 , the noncovalent interactions yield pseudo‐nanotubes filled with chloride anions and water molecules, which were modelled in the refinement with substitutional and positional disorder.  相似文献   

7.
2‐(2‐(1‐(1H‐Indol‐3‐yl)ethylidene)‐hydrazinyl)‐4‐substituted 5‐(aryldiazenyl)thiazoles and 5‐((1‐(1H‐indol‐3‐yl)ethylidene)hydrazono)‐2‐substituted‐4‐phenyl‐4,5‐dihydro‐1,3,4‐thiadiazoles were synthesized via reaction of hydrazonoyl halides and 2‐(1‐(1H‐indol‐3‐yl)ethylidene)hydrazine‐1‐carbothioamide and alkyl 2‐(1‐(1H‐indol‐3‐yl)ethylidene)hydrazine‐1‐carbodithioate in ethanolic triethylamine. Structures of the newly synthesis were elucidated on the basis of elemental analysis, spectral data, and alternative synthetic route whenever possible.  相似文献   

8.
A new series of (E)‐1‐(4‐((1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)methoxy)phenyl)‐3‐phenylprop‐2‐en‐1‐one 1a (4‐((1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl) methoxy)phenyl)‐1‐phenylprop‐2‐en‐1‐one 1b – 15b were designed, synthesized based on click chemistry, and biologically evaluated for their activity on tyrosinase. The result showed that most of prepared compounds 1a – 15a have potent activating effect on tyrosinase, especially for 3a , 8a – 10a and 14a – 15a . Among them, compounds 10a and 14a demonstrated the best activity with EC50=1.71 and 5.60 µmol·L?1 respectively, even better than the positive control 8‐MOP (EC50=14.8 µmol·L?1). Conversely, compounds 3b , 5b – 6b , 9b – 10b , and 15b induced enzymatic inhibition on tyrosinase.  相似文献   

9.
The reaction of [Pd(CH3CN)2Cl2] with N ‐functional group‐substituted 2‐iminomethylpyrrole‐based ligands, namely N 1‐((1H‐pyrrol‐2‐yl)methylene)‐N 3,N 3‐dimethylpropane‐1,3‐diamine (LA), N 1‐((1H‐pyrrol‐2‐yl)methylene)‐N 3‐methyl‐N 3‐phenylpropane‐1,3‐diamine (LB), N ‐((1H‐pyrrol‐2‐yl)methylene)‐3‐(methylthio)propan‐1‐amine (LC) and N ‐((1H‐pyrrol‐2‐yl)methylene)‐3‐methoxypropan‐1‐amine (LD), resulted in [Ln PdCl] (Ln  = LA–LD) complexes in high yield via N─H bond activation of pyrrole moiety without use of base. [Ln PdCl] existed as monomeric four‐coordinated complexes with slightly distorted square planar geometries around the palladium metal center. The ligands show N ,N ′,X ‐tridentate binding mode to the palladium metal center to give two fused ring metallacycles. [LBPdCl] gave the highest activity (3.29 × 105 g PMMA (mol Pd)−1 h−1) for a methyl methacrylate (MMA) polymerization in the presence of modified methylaluminoxane at 60 °C compared to the other Pd(II) analogues, and resulted in PMMA with higher molecular weight (M w = 7.16 × 105 g mol−1) and narrower polydispersity index. Syndiotactic‐enriched PMMA resulted in all cases.  相似文献   

10.
Two chemosensors 4H‐1‐benzopyran‐3‐carboxaldehyde, 4‐oxo‐, 3‐(2‐phenylhydrazone), [I1] and 4H‐1‐benzopyran‐3‐carboxaldehyde, 4‐oxo‐, 3‐[2‐(2,4‐dinitrophenyl)hydrazone], [I2] with hydrazone‐NH group as binding site have been shown excellent selectivity for arsenite ion. It is confirmed by the UV‐vis titration that I2 is more selective than I1. The performance of the coated graphite electrode (CGE) was found to be better than polymeric membrane electrode (PME) in terms of linear range of 4.89×10?7–1.0×10?1 mol L?1, low detection limit of 8.31×10?8 mol L?1 and short response time. The proposed sensors were also used to determine the arsenite ion in different water samples.  相似文献   

11.
A concise and efficient synthesis of 6‐benzimidazolyl‐5‐nitrosopyrimidines has been developed using Schiff base‐type intermediates derived from N4‐(2‐aminophenyl)‐6‐methoxy‐5‐nitrosopyrimidine‐2,4‐diamine. 6‐Methoxy‐N4‐{2‐[(4‐methylbenzylidene)amino]phenyl}‐5‐nitrosopyrimidine‐2,4‐diamine, (I), and N4‐{2‐[(ethoxymethylidene)amino]phenyl}‐6‐methoxy‐5‐nitrosopyrimidine‐2,4‐diamine, (III), both crystallize from dimethyl sulfoxide solution as the 1:1 solvates C19H18N6O2·C2H6OS, (Ia), and C14H16N6O3·C2H6OS, (IIIa), respectively. The interatomic distances in these intermediates indicate significant electronic polarization within the substituted pyrimidine system. In each of (Ia) and (IIIa), intermolecular N—H…O hydrogen bonds generate centrosymmetric four‐molecule aggregates. Oxidative ring closure of intermediate (I), effected using ammonium hexanitratocerate(IV), produced 4‐methoxy‐6‐[2‐(4‐methylphenyl‐1H‐benzimidazol‐1‐yl]‐5‐nitrosopyrimidin‐2‐amine, C19H16N6O2, (II) [Cobo et al. (2018). Private communication (CCDC 1830889). CCDC, Cambridge, England], where the extent of electronic polarization is much less than in (Ia) and (IIIa). A combination of N—H…N and C—H…O hydrogen bonds links the molecules of (II) into complex sheets.  相似文献   

12.
The reaction of 1H‐indol‐2,3‐diones with 1,6‐dibromohexane has resulted in the formation of new 1H‐indol‐2,3‐diones‐1,1′‐(1,6‐hexanediyl)bis in quantitative yields. These compounds have been used for the synthesis of novel [3′‐(2,3‐dimethyl‐5‐oxo‐1‐phenyl‐3‐pyrazolin‐4‐yl)spiro[3H‐indol‐3,2′‐thiazolidine]‐2,4′‐dione]‐1,1′‐(1,6‐hexanediyl)bis via bis Schiff's bases, [3‐(2,3‐dimethyl‐5‐oxo‐1‐phenyl‐3‐pyrazolin‐4‐yl) imino‐1H‐indol‐2‐one]‐1,1′‐(1,6‐hexanediyl)bis.  相似文献   

13.
A concise and efficient synthesis of a series of amino‐substituted benzimidazole–pyrimidine hybrids has been developed, starting from the readily available N4‐(2‐aminophenyl)‐6‐methoxy‐5‐nitrosopyrimidine‐2,4‐diamine. In each of N5‐benzyl‐6‐methoxy‐4‐(2‐phenyl‐1H‐benzo[d]imidazol‐1‐yl)pyrimidine‐2,5‐diamine, C25H22N6O, (I), 6‐methoxy‐N5‐(4‐methoxybenzyl)‐4‐[2‐(4‐methoxyphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidine‐2,5‐diamine, C27H26N6O3, (III), 6‐methoxy‐N5‐(4‐nitrobenzyl)‐4‐[2‐(4‐nitrophenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidine‐2,5‐diamine, C25H20N8O5, (IV), the molecules are linked into three‐dimensional framework structures, using different combinations of N—H…N, N—H…O, C—H…O, C—H…N and C—H…π hydrogen bonds in each case. Oxidative cleavage of 6‐methoxy‐N5‐(4‐methylbenzyl)‐4‐[2‐(4‐methylphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidine‐2,5‐diamine, (II), with diiodine gave 6‐methoxy‐4‐[2‐(4‐methylphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidine‐2,5‐diamine, which crystallized as a monohydrate, C19H18N6O·H2O, (V), and reaction of (V) with trifluoroacetic acid gave two isomeric products, namely N‐{5‐amino‐6‐methoxy‐6‐[2‐(4‐methylphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidin‐2‐yl}‐2,2,2‐trifluoroacetamide, which crystallized as an ethyl acetate monosolvate, C21H17F3N6O2·C4H8O2, (VI), and N‐{2‐amino‐6‐methoxy‐4‐[2‐(4‐methylphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidin‐5‐yl}‐2,2,2‐trifluoroacetamide, which crystallized as a methanol monosolvate, C21H17F3N6O2·CH4O, (VIIa). For each of (V), (VI) and (VIIa), the supramolecular assembly is two‐dimensional, based on different combinations of O—H…N, N—H…O, N—H…N, C—H…O and C—H…π hydrogen bonds in each case. Comparisons are made with some related structures.  相似文献   

14.
The structures of cocrystals of 2,6‐dichlorophenol with 2,4‐diamino‐6‐methyl‐1,3,5‐triazine, C6H4Cl2O·C4H7N5, (III), and 2,6‐dichloroaniline with 2,6‐diaminopyrimidin‐4(3H)‐one and N,N‐dimethylacetamide, C6H5Cl2N·C4H6N4O·C4H9NO, (V), plus three new pseudopolymorphs of their coformers, namely 2,4‐diamino‐6‐methyl‐1,3,5‐triazine–N,N‐dimethylacetamide (1/1), C4H7N5·C4H9NO, (I), 2,4‐diamino‐6‐methyl‐1,3,5‐triazine–N‐methylpyrrolidin‐2‐one (1/1), C4H7N5·C5H9NO, (II), and 6‐aminoisocytosine–N‐methylpyrrolidin‐2‐one (1/1), C4H6N4O·C5H9NO, (IV), are reported. Both 2,6‐dichlorophenol and 2,6‐dichloroaniline are capable of forming definite synthon motifs, which usually lead to either two‐ or three‐dimensional crystal‐packing arrangements. Thus, the two isomorphous pseudopolymorphs of 2,4‐diamino‐6‐methyl‐1,3,5‐triazine, i.e. (I) and (II), form a three‐dimensional network, while the N‐methylpyrrolidin‐2‐one solvate of 6‐aminoisocytosine, i.e. (IV), displays two‐dimensional layers. On the basis of these results, attempts to cocrystallize 2,6‐dichlorophenol with 2,4‐diamino‐6‐methyl‐1,3,5‐triazine, (III), and 2,6‐dichloroaniline with 6‐aminoisocytosine, (V), yielded two‐dimensional networks, whereby in cocrystal (III) the overall structure is a consequence of the interaction between the two compounds. By comparison, cocrystal–solvate (V) is mainly built by 6‐aminoisocytosine forming layers, with 2,6‐dichloroaniline and the solvent molecules arranged between the layers.  相似文献   

15.
In an attempt to achieve promising cytotoxic agents, a series of new (Z)‐3‐benzyl‐5‐((1‐phenyl‐3‐(3‐((1‐substituted phenyl‐1H‐1,2,3‐triazol‐4‐yl)methoxy)phenyl)‐1H‐pyrazol‐4‐yl)methylene)thiazolidine‐2,4‐diones 10 a‐n were designed, synthesized, and characterized by 1H NMR, 13C NMR, IR, and ESI‐MS techniques. These compounds synthesized from appropriate reaction procedures with better yields. All the novel synthesized compounds 10a‐n were evaluated for their cytotoxic activity against the MCF‐7 cell line (Human breast cancer cell line) at different concentrations of 0.625, 1.25, 2.5, 5, and 10 μM, respectively. The cytotoxic evaluation assay is presented in terms of IC50 values and percentage cell viability reduction compared against standard drug cisplatin. Among all novel synthesized compounds 10a‐n , some of the representative analogues particularly 10g and 10e exhibit remarkable cytotoxic activity with IC50 values 0.454 and 0.586 μM, comparable to that of the standard drug cisplatin, and some analogues 10d , 10f , 10k, and 10m also have shown significant activity.  相似文献   

16.
2,4,6‐Tris(pyridin‐4‐yl)‐1,3,5‐triazine (tpt), as an organic molecule with an electron‐deficient nature, has attracted considerable interest because of its photoinduced electron transfer from neutral organic molecules to form stable anionic radicals. This makes it an excellent candidate as an organic linker in the construction of photochromic complexes. Such a photochromic three‐dimensional (3D) metal–organic framework (MOF) has been prepared using this ligand. Crystallization of tpt with Cd(NO3)2·4H2O in an N,N‐dimethylacetamide–methanol mixed‐solvent system under solvothermal conditions afforded the 3D MOF poly[[bis(nitrato‐κ2O,O′)cadmium(II)]‐μ3‐2,4,6‐tris(pyridin‐4‐yl)‐1,3,5‐triazine‐κ3N2:N4:N6], [Cd(NO3)2(C18H12N6)]n, which was characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis and single‐crystal X‐ray diffraction. The X‐ray diffraction crystal structure analysis reveals that the asymmetric unit contains one independent CdII cation, one tpt ligand and two coordinated NO3? anions. The CdII cations are connected by tpt ligands to generate a 3D framework. The single framework leaves voids that are filled by mutual interpenetration of three independent equivalent frameworks in a fourfold interpenetrating architecture. The compound shows a good thermal stability and exhibits a reversible photochromic behaviour, which may originate from the photoinduced electron‐transfer generation of radicals in the tpt ligand.  相似文献   

17.
The synthesis of deuterium labeled tryptamine derivatives, [2‐(1H‐indol‐3‐yl)‐[2H4]‐ethyl]‐dimethylamine (DMT), [2H10]‐diethyl‐[2‐(1H‐indol‐3‐yl)‐ethyl]‐amine (DET), [2‐(1H‐indol‐3‐yl)‐ethyl]‐[2H6]‐dipropyl‐amine (DPT) and [2H2]‐alpha‐methyltryptamine (AMT) is described. The isotopically labeled compounds are used as internal standards in gas chromatography‐mass spectrometry (GC‐MS) assays.  相似文献   

18.
An electrochemical sensor was developed for determination of hydrogen peroxide based on nanocopper oxides modified carbon sol‐gel or carbon ceramic electrode (CCE). The modified electrode was prepared by electrodeposition of metallic copper on the CCE surface and derivatized in situ to copper oxides nanostructures and characterized by scanning electron microscopy (SEM) and X‐ray diffraction (XRD) techniques. The modified electrode responded linearly to the hydrogen peroxide (H2O2) concentration over the range 0.78–193.98 µmol L?1 with a detection limit of 71 nmol L?1 (S/N=3) and the sensitivity of 0.697 A mol?1 L cm?2. This electrode was used as selective amperometric sensor for determination of H2O2 contents in hair coloring creams.  相似文献   

19.
Two complexes of 5‐phenyl‐3‐(pyridin‐2‐yl)‐1,2,4‐triazine (PPTA), namely (ethanol‐κO)bis(nitrato‐κO)[5‐phenyl‐3‐(pyridin‐2‐yl‐κN)‐1,2,4‐triazine‐κN2]copper(II), [Cu(NO3)2(C14H10N4)(C2H6O)] or [Cu(NO3)2(PPTA)(EtOH)] ( 1 ), and bis[μ‐5‐phenyl‐3‐(pyridin‐2‐yl)‐1,2,4‐triazine]‐κ3N1:N2,N33N2,N3:N1‐bis[(nitrato‐κO)silver(I)], [Ag2(NO3)2(C14H10N4)2] or [Ag2(NO3)2(μ‐PPTA)2] ( 2 ), were prepared and characterized by elemental analysis, FT–IR spectroscopy and single‐crystal X‐ray diffraction. The X‐ray structure analysis of 1 revealed a copper complex with square‐pyramdial geometry containing two O‐donor nitrate ligands along with an N,N′‐donor PPTA ligand and one O‐donor ethanol ligand. In the binuclear structure of 2 , formed by the bridging of two PPTA ligands, each Ag atom has an AgN3O environment and square‐planar geometry. In addition to the four dative interactions, each Ag atom interacts with two O atoms of two nitrate ligands on adjacent complexes to complete a pseudo‐octahedral geometry. Density functional theory (DFT) calculations revealed that the geometry around the Cu and Ag atoms in 1 opt and 2 opt (opt is optimized) for an isolated molecule is the same as the experimental results. In 1 , O—H…O hydrogen bonds form R12(4) motifs. In the crystal network of the complexes, in addition to the hydrogen bonds, there are π–π stacking interactions between the aromatic rings (phenyl, pyridine and triazine) of the ligands on adjacent complexes. The ability of the ligand and complexes 1 and 2 to interact with ten selected biomacromolecules (BRAF kinase, CatB, DNA gyrase, HDAC7, rHA, RNR, TrxR, TS, Top II and B‐DNA) was investigated by docking studies. The results show that the studied compounds can interact with proteins better than doxorubicin (except for TrxR and Top II).  相似文献   

20.
A study of the oxygen reduction reaction (ORR) on a screen printed carbon electrode surface mediated by the tricopper cluster complex Cu3(7‐N‐Etppz(CH2OH)) dispersed on electrochemically reduced carbon black, where 7‐N‐Etppz(CH2OH) is the ligand 3,3′‐(6‐(hydroxymethyl)‐1,4‐diazepane‐1,4‐diyl)bis(1‐(4‐ethyl piperazin‐1‐yl)propan‐2‐ol), is described. Onset oxygen reduction potentials of about 0.92 V and about 0.77 V are observed at pH 13 and pH 7 vs. the reversible hydrogen electrode, which are comparable to the best values reported for any synthetic copper complex. Based on half‐wave potentials (E1/2), the corresponding overpotentials are about 0.42 V and about 0.68 V, respectively. Kinetic studies indicate that the trinuclear copper catalyst can accomplish the 4 e? reduction of O2 efficiently and the ORR is accompanied by the production of only small amounts of H2O2. The involvement of the copper triad in the O2 activation process is also verified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号