首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multicolor upconversion (UC) luminescence of NaYF4:Yb3+/Er3+ nanoparticles (NPs) was successfully tuned by simply controlling the NaF dosage. Unlike UC nanocrystals previously reported in the literature with multicolor emission obtained by varying the rare‐earth dopants, the current work developed a new approach to tune the UC emission color by controlling the NaF concentration without changing the ratio and dosage of rare‐earth ions. TEM and powder XRD were used to characterize the shape, size, and composition of the UC luminescent nanocrystals. The luminescence images, emission spectra, and multicolor emission mechanism of the NPs have also been demonstrated. As a result of the excellent ability of this new method to manipulate color emission, this will open up new avenues in the areas of bioprobes, light‐emitting devices, color displays, lasers, and so forth. To demonstrate their biological applications, the water‐stable, biocompatible, and bioconjugatable NaYF4:Yb3+/Er3+@poly(acrylic acid) NPs were synthesized by this developed strategy and applied in targeted‐cell UC luminescence imaging.  相似文献   

2.
A new method is presented for preparing gram amounts of very small core/shell upconversion nanocrystals without additional codoping of the particles. First, ca. 5 nm β‐NaYF4:Yb,Er core particles are formed by the reaction of sodium oleate, rare‐earth oleate, and ammonium fluoride, thereby making use of the fact that a high ratio of sodium to rare‐earth ions promotes the nucleation of a large number of β‐phase seeds. Thereafter, a 2 nm thick NaYF4 shell is formed by using 3–4 nm particles of α‐NaYF4 as a single‐source precursor for the β‐phase shell material. In contrast to the core particles, however, these α‐phase particles are prepared with a low ratio of sodium to rare‐earth ions, which efficiently suppresses an undesired nucleation of β‐NaYF4 particles during shell growth.  相似文献   

3.
In this paper, we report a facile one‐step hydrothermal method to synthesize phase‐, size‐, and shape‐controlled carboxyl‐functionalized rare‐earth fluorescence upconversion phosphors by using a small‐molecule binary acid, such as malonic acid, oxalic acid, succinic acid, or tartaric acid as capping agent. The crystals, from nano‐ to microstructures with diverse shapes that include nanospheres, microrods, hexagonal prisms, microtubes, microdisks, polygonal columns, and hexagonal tablets, can be obtained with different reaction times, reaction temperatures, molar ratios of capping agent to sodium hydroxide, and by varying the binary acids. Fourier transform infrared, thermogravimetric analysis, and upconversion luminescence spectra measurements indicate that the synthesized NaYF4:Yb/Er products with hydrophilic carboxyl‐functionalized surface offer efficient upconversion luminescent performance. Furthermore, the antibody/secondary antibody conjugation can be realized by the carboxyl‐functionalized surfaces of the upconversion phosphors, thus indicating the potential bioapplications of these kinds of materials.  相似文献   

4.
High‐quality rare‐earth fluorides, α‐NaMF4 (M=Dy, Ho, Er, Tm, Y, Yb, and Lu) nanocrystals and β‐NaMF4 (M=Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Y, Yb, and Lu) nanoarrays, have been synthesized by using oleic acid as a stabilizing agent through a facile hydrothermal method at 130–230 °C. The phase, shape, and size of the products are varied by careful control of synthetic conditions, including hydrothermal temperature and time, and the amounts of reactants and solvents. Tuning the hydrothermal temperature, time, and the amount of NaOH can cause the transformation from the cubic α‐NaMF4 to hexagonal phase β‐NaMF4. Upon adjustment of the amount of NaOH, NaF, M3+, and ethanol, the morphologies for the β‐NaMF4 nanoarrays can range from tube, rod, wire, and zigzagged rod, to flower‐patterned disk. Simultaneously, the size of the rare‐earth fluoride crystals is variable from 5 nm to several micrometers. A combination of “diffusion‐controlled growth” and the “organic–inorganic interface effect” is proposed to understand the formation of the nanocrystals. An ideal “1D growth” of rare‐earth fluorides is preferred at high temperatures and high ethanol contents, from which the tube‐ and rodlike nanoarrays with high aspect ratio are obtained. In contrast, the disklike β‐NaMF4 nanoarrays with low aspect ratios are produced by decreasing the ethanol content or prolonging the reaction time, an effect probably caused by “1D/2D ripening”. Multicolor up‐conversion fluorescence is also successfully realized in the Yb3+/Er3+ (green, red) and Yb3+/Tm3+ (blue) co‐doped α‐NaYF4 nanocrystals and β‐NaYF4 nanoarrays by excitation in the NIR region (980 nm).  相似文献   

5.
Extending the spectral absorption of organolead halide perovskite solar cells from visible into near‐infrared (NIR) range renders the minimization of non‐absorption loss of solar photons with improved energy alignment. Herein, we report on, for the first time, a viable strategy of capitalizing on judiciously synthesized monodisperse NaYF4:Yb/Er upconversion nanoparticles (UCNPs) as the mesoporous electrode for CH3NH3PbI3 perovskite solar cells and more importantly confer perovskite solar cells to be operative under NIR light. Uniform NaYF4:Yb/Er UCNPs are first crafted by employing rationally designed double hydrophilic star‐like poly(acrylic acid)‐block‐poly(ethylene oxide) (PAA‐b‐PEO) diblock copolymer as nanoreactor, imparting the solubility of UCNPs and the tunability of film porosity during the manufacturing process. The subsequent incorporation of NaYF4:Yb/Er UCNPs as the mesoporous electrode led to a high efficiency of 17.8 %, which was further increased to 18.1 % upon NIR irradiation. The in situ integration of upconversion materials as functional components of perovskite solar cells offers the expanded flexibility for engineering the device architecture and broadening the solar spectral use.  相似文献   

6.
Upconversion emissions from rare-earth nanoparticles have attracted much interest as potential biolabels, for which small particle size and high emission intensity are both desired. Herein we report a facile way to achieve NaYF(4):Yb,Er@CaF(2) nanoparticles (NPs) with a small size (10-13 nm) and highly enhanced (ca. 300 times) upconversion emission compared with the pristine NPs. The CaF(2) shell protects the rare-earth ions from leaking, when the nanoparticles are exposed to buffer solution, and ensures biological safety for the potential bioprobe applications. With the upconversion emission from NaYF(4):Yb,Er@CaF(2) NPs, HeLa cells were imaged with low background interference.  相似文献   

7.
Herein, we introduce a facile, user‐ and environmentally friendly (n‐octanol‐induced) oleic acid (OA)/ionic liquid (IL) two‐phase system for the phase‐ and size‐controllable synthesis of water‐soluble hexagonal rare earth (RE=La, Gd, and Y) fluoride nanocrystals with uniform morphologies (mainly spheres and elongated particles) and small sizes (<50 nm). The unique role of the IL 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BmimPF6) and n‐octanol in modulating the phase structure and particle size are discussed in detail. More importantly, the mechanism of the (n‐octanol‐induced) OA/IL two‐phase system, the formation of the RE fluoride nanocrystals, and the distinctive size‐ and morphology‐controlling capacity of the system are presented. BmimPF6 is versatile in term of crystal‐phase manipulation, size and shape maintenance, and providing water solubility in a one‐step reaction. The luminescent properties of Er3+‐, Ho3+‐, and Tm3+‐doped LaF3, NaGdF4, and NaYF4 nanocrystals were also studied. It is worth noting that the as‐prepared products can be directly dispersed in water due to the hydrophilic property of Bmim+ (cationic part of the IL) as a capping agent. This advantageous feature has made the IL‐capped products favorable in facile surface modifications, such as the classic Stober method. Finally, the cytotoxicity evaluation of NaYF4:Yb,Er nanocrystals before and after silica coating was conducted for further biological applications.  相似文献   

8.
The separation of rare‐earth ions from one another is challenging due to their chemical and physical similarities. Nearly all rare‐earth separations rely upon small changes in ionic radii to direct speciation or reactivity. Herein, we show that the intrinsic magnetic properties of the rare‐earth ions impact the separations of light/heavy and selected heavy/heavy binary mixtures. Using TriNOx3? ([{(2‐tBuNO)C6H4CH2}3N]3?) rare‐earth complexes, we efficiently and selectively crystallized heavy rare earths (Tb–Yb) from a mixture with light rare earths (La and Nd) in the presence of an external Fe14Nd2B magnet, concomitant with the introduction of a concentration gradient (decrease in temperature). The optimal separation was observed for an equimolar mixture of La:Dy, which gave an enrichment factor of EFLa:Dy=297±31 for the solid fraction, compared to EFLa:Dy=159±22 in the absence of the field, and achieving a 99.7 % pure Dy sample in one step. These results indicate that the application of a magnetic field can improve performance in a molecular separation system for paramagnetic rare‐earth cations.  相似文献   

9.
Small (2–28 nm) NaREF4 (rare earth (RE)=Nd–Lu, Y) nanoparticles (NPs) were prepared by an oil/water two‐phase approach. Meanwhile, hydrophilic NPs can be obtained through a successful phase‐transition process by introducing the amphiphilic surfactant sodium dodecylsulfate (SDS) into the same reaction system. Hollow‐structured NaREF4 (RE=Y, Yb, Lu) NPs can be fabricated in situ by electron‐beam lithography on solid NPs. The MTT assay indicates that these hydrophilic NPs with hollow structures exhibit good biocompatibility. The as‐prepared hollow‐structured NPs can be used as anti‐cancer drug carriers for drug storage/release investigations. Doxorubicin hydrochloride (DOX) was taken as model drug. The release of DOX from hollow α‐NaLuF4:20 % Yb3+, 2 % Er3+ exhibits a pH‐sensitive release patterns. Confocal microscopy observations indicate that the NPs can be taken up by HeLa cells and show obvious anti‐cancer efficacy. Furthermore, α‐NaLuF4:20 % Yb3+, 2 % Er3+ NPs show bright‐red emission under IR excitation, making both the excitation and emission light fall within the “optical window” of biological tissues. The application of α‐NaLuF4:20 % Yb3+, 2 % Er3+ in the luminescence imaging of cells was also investigated, which shows a bright‐red emission without background noise.  相似文献   

10.
The stabilization of high oxidation state nanoparticles by N‐heterocyclic carbenes is reported. Such nanoparticles represent an important subset in the field of nanoparticles, with different and more challenging requirements for suitable ligands compared to elemental metal nanoparticles. N‐Heterocyclic carbene coated NaYF4:Yb,Tm upconversion nanoparticles were synthesized by a ligand‐exchange reaction from a well‐defined precursor. This new photoactive material was characterized in detail and employed in the activation of photoresponsive molecules by low‐intensity near‐infrared light (λ =980 nm).  相似文献   

11.
Novel β‐NaGdF4/Na(Gd,Yb)F4:Er/NaYF4:Yb/NaNdF4:Yb core/shell 1/shell 2/shell 3 (C/S1/S2/S3) multi‐shell nanocrystals (NCs) have been synthesized and used as probes for in vivo imaging. They can be excited by near‐infrared (800 nm) radiation and emit short‐wavelength infrared (SWIR, 1525 nm) radiation. Excitation at 800 nm falls into the “biological transparency window”, which features low absorption by water and low heat generation and is considered to be the ideal excitation wavelength with the least impact on biological tissues. After coating with phospholipids, the water‐soluble NCs showed good biocompatibility and low toxicity. With efficient SWIR emission at 1525 nm, the probe is detectable in tissues at depths of up to 18 mm with a low detection threshold concentration (5 nM for the stomach of nude mice and 100 nM for the stomach of SD rats). These results highlight the potential of the probe for the in vivo monitoring of areas that are otherwise difficult to analyze.  相似文献   

12.
13.
Despite the successful application of upconversion nanoparticles (UCNPs), their low energy transfer efficiency is still a bottleneck to further applications. Here we design UCNPs with a multilayer structure, including an inert NaYF4:Gd core and an energy‐concentrating zone (ECZ), for efficient energy concentration. The ECZ is composed of an emitting layer of NaYF4:Yb,Er and an absorption layer of NaYF4:Nd,Yb with antenna IRDye 800CW to manipulate the energy transfer. The stable and tight packing of 800CW linked originally with a bisphosphonate ligand improves greatly the transfer efficiency. The proximity of the emitting layer to both surface antenna and accepter also decreases energy depletion. Compared to classical UCNPs, the ECZ UCNPs show 3600 times higher luminescence intensity with an energy transfer efficiency near 60 %. In proof‐of‐concept applications, this type of structure was employed for Hg2+ detection and for photodynamic therapy under hypoxic conditions.  相似文献   

14.
We report an epitaxial growth technique for scalable production of hybrid sodium rare‐earth fluoride (NaLnF4) microcrystals, including NaYF4, NaYbF4, and NaLuF4 material systems. The single crystalline nature of the as‐synthesized products makes them strong upconversion emission. The freedom of combining a lanthanide activator (Er3+ or Tm3+) with a sensitizer (Yb3+) at various doping concentrations readily gives access to color multiplexing at the single‐particle level. Our kinetic and thermodynamic investigations on the epitaxial growth of core–shell microcrystals using NaLnF4 particle seeds suggest that within a certain size regime it is plausible to exert precise control over shell thickness and growth orientation under hydrothermal conditions.  相似文献   

15.
陈钰雪  燕照霞  姜磊 《化学通报》2021,84(9):919-925
以NaYF_4材料为基质的上转换纳米颗粒(UCNPs)是最早报道的、应用范围最广的上转换材料之一。掺杂了稀土离子的颗粒不但可以在不同激发条件下发射出不同波长和强度的荧光,而且可以与多种光敏分子搭配使用,通过荧光共振能量转移产生单线态氧,实现生物医学成像或诊疗方面的应用。但是其形貌和荧光性能均受制备方法和工艺条件的影响较大。本文通过水热法合成了两类掺杂不同稀土离子的十种NaYF_4 UCNPs,在保持掺杂离子的终浓度不变的条件下,探究离子类型与比例对纳米材料的结构和上转换发光性能的影响。在此基础上,探索了多种卟啉类光敏剂分子与NaYF_4 UCNPs发生能量转换及单线态氧的产生能力。本工作可为基于NaYF_4材料的上转换颗粒的规模化制备和工艺升级提供数据支撑和理论参考。  相似文献   

16.
Novel upconversion nanocomposites with nanoporous structure were presented in this paper. Silica-coated cubic NaYF4:Yb3+, Tm3+ nanoparticles were first prepared. After annealing, monodisperse cubic/hexagonal mixed phases NaYF4:Yb3+, Tm3+@SiO2 nanoparticles were obtained, and the NaYF4:Yb3+, Tm3+ cores became nanoporous. To the best of our knowledge, the nanoporous structure in NaYF4:Yb3+, Tm3+@SiO2 nanocomposites was observed for the first time. They demonstrate increased upconversion emission compared with unannealed dense NaYF4:Yb3+, Tm3+ nanoparticles due to the appearance of the hexagonal NaYF4:Yb3+, Tm3+. The silica shell not only makes the nanocomposites possess bio-affinity but also protects the NaYF4:Yb3+, Tm3+ cores from aggregating and growing up. Thus the upconversion, nanoporous and bio-affinity properties were combined into one single nanoparticle. The nanocomposites have been characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD) and emission spectroscopy. These multifunctional nanocomposites are expected to find applications in biological fields, such as biolabels, drug storage and delivery.  相似文献   

17.
Upconversion core/shell nanocrystals with different mean sizes ranging from 15 to 45 nm were prepared via a modified synthesis procedure based on anhydrous rare‐earth acetates. All particles consist of a core of NaYF4:Yb,Er, doped with 18 % Yb3+ and 2 % Er3+, and an inert shell of NaYF4, with the shell thickness being equal to the radius of the core particle. Absolute measurements of the photoluminescence quantum yield at a series of different excitation power densities show that the quantum yield of 45 nm core/shell particles is already very close to the quantum yield of microcrystalline upconversion phosphor powder. Smaller core/shell particles prepared by the same method show only a moderate decrease in quantum yield. The quantum yield of 15 nm core/shell particles, for instance, is reduced by a factor of three compared to the bulk upconversion phosphor at high power densities (100 W cm?2) and by approximately a factor of 10 at low power densities (1 W cm?2).  相似文献   

18.
Due to the unique size effects, nanomaterials in infrared absorption have attracted much attention for their strong absorption in the infrared region. To achieve the infrared multi‐band absorption, we propose to synthesize a core‐shell structure nanomaterial consisting of NaYF4:Yb3+, Er3+ core and a layer of SiO2 as shell. A series of NaYF4:Yb3+, Er3+ nanocrystals were synthesized through hydrothermal method by adjusting the ratio of citric acid(CA)‐to‐NaOH, and the effects of CA concentration, and NaOH concentration were studied in detail. NaYF4:Yb3+, Er3+@SiO2 nanoparticles were synthesized by sol‐gel method using TEOS as silica source. The results show that the core‐shell NaYF4:Yb3+, Er3+@SiO2 nanoparticles were successfully synthesized. Up‐conversion spectra of these nanoparticles were recorded with 980 nm laser excitation under room temperature. There are no changes of the emission centers of nanoparticles before or after silica coating, but the emission intensities of nanoparticles after silica coating are weakened. Furthermore, the property of infrared multi‐band absorption was tested through ultraviolet‐visible‐near infrared spectrophotometer and infrared absorption spectra. The results illustrate that the multi‐band infrared absorption nanomaterial was successfully synthesized.  相似文献   

19.
The decomposed regularity of rare‐earth nitrates in octadecylamine (ODA) is discussed. The experimental results show that these nitrates can be divided into four types. For rare‐earth nitrates with larger RE3+ ions (RE=rare earth, La, Pr, Nd, Sm, Eu, Gd), the decomposed products exhibited platelike nanostructures. For those with smaller RE3+ ions (RE=Y, Dy, Ho, Er, Tm, Yb), the decomposed products exhibited beltlike nanostructures. For terbium nitrate with a middle RE3+ ion, the decomposed product exhibited a rodlike nanostructure. The corresponding rare‐earth oxides, with the same morphologies as their precursors, could be obtained when these decomposed products were calcined. For cerium nitrate, which showed the greatest differences, flowerlike cerium oxide could be obtained directly from decomposition of the nitrate without further calcination. This regularity is explained on the basis of the lanthanide contraction. Owing to their differences in electron configuration, ionic radius, and crystal structure, such a nitrate family therefore shows different thermolysis properties. In addition, the potential application of these as‐obtained rare‐earth oxides as catalysts and luminescent materials was investigated. The advantages of this method for rare‐earth oxides includes simplicity, high yield, low cost, and ease of scale‐up, which are of great importance for their industrial applications.  相似文献   

20.
Hollow mesoporous SiO2 (mSiO2) nanostructures with movable nanoparticles (NPs) as cores, so‐called yolk‐shell nanocapsules (NCs), have attracted great research interest. However, a highly efficient, simple and general way to produce yolk‐mSiO2 shell NCs with tunable functional cores and shell compositions is still a great challenge. A facile, general and reproducible strategy has been developed for fabricating discrete, monodisperse and highly uniform yolk‐shell NCs under mild conditions, composed of mSiO2 shells and diverse functional NP cores with different compositions and shapes. These NPs can be Fe3O4 NPs, gold nanorods (GNRs), and rare‐earth upconversion NRs, endowing the yolk‐mSiO2 shell NCs with magnetic, plasmonic, and upconversion fluorescent properties. In addition, multifunctional yolk‐shell NCs with tunable interior hollow spaces and mSiO2 shell thickness can be precisely controlled. More importantly, fluorescent‐magnetic‐biotargeting multifunctional polyethyleneimine (PEI)‐modified fluorescent Fe3O4@mSiO2 yolk‐shell nanobioprobes as an example for simultaneous targeted fluorescence imaging and magnetically guided drug delivery to liver cancer cells is also demonstrated. This synthetic approach can be easily extended to the fabrication of multifunctional yolk@mSiO2 shell nanostructures that encapsulate various functional movable NP cores, which construct a potential platform for the simultaneous targeted delivery of drug/gene/DNA/siRNA and bio‐imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号