首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Ion exchange equilibrium constant (K) for Cl/Br and Cl/C2O42− system was studied at different temperatures from 30 to 45°C. For both uni-univalent and uni-bivalent exchange systems, the value of K increases with rise in temperature i.e., from 1.16 at 30°C to 2.95 at 45°C for Cl/Br system and 19.5 at 30°C to 30.0 at 45°C for Cl/C2O42− system indicating the endothermic ion exchange reaction. The difference in K values at the same temperature for the two was related to the ionic charge of exchangeable ions in the solution. The article is published in the original.  相似文献   

2.
The study on thermodynamics of ion exchange equilibrium for uni-univalent Cl/I, Cl/Br, and uni-divalent Cl/SO42−, Cl/C2O42− reaction systems was carried out using ion-exchange resin Duolite A-113. The equilibrium constant K was calculated by taking into account the activity coefficient of ions both in solution as well as in the resin phase. The K values calculated for uni-univalent and uni-divalent anion exchange reaction systems were observed to increase with rise in temperature, indicating the endothermic exchange reactions having enthalpy values of 17.21, 36.60, 19.50, 18.43 kJ/mol respectively.  相似文献   

3.
A study of the thermodynamics of ion exchange equilibrium for uni-univalent Cl/I, Cl/Br and uni-divalent Cl/SO 4 2− , Cl/C2O 4 2− reaction systems was carried out using ion exchange resin Indion-830 (Type 1). The equilibrium constant K was calculated by taking into account the activity coefficients of ions both in solution and in the resin phase. For uni-univalent ion exchange reaction systems, the equilibrium constants K′ were also calculated from the mole fraction of ions in the resin phase. The K values calculated for uni-univalent and uni-divalent anion exchange reaction systems increased as the temperature grew, indicating the endothermic character of the exchange reactions with enthalpies of 38.2, 32.3, 7.6, and 11.4 kJ/mol, respectively. The article is published in the original.  相似文献   

4.
Equations were developed for the calculation of the first stoichiometric (molality scale) dissociation constant (K m1) of oxalic acid in buffer solutions containing oxalic acid, potassium hydrogen oxalate, and potassium chloride from the determined thermodynamic values of this dissociation constant (K a1) and the molalities of the components in the solutions. Similar equations were also developed for the second stoichiometric dissociation constant (K m2) of this acid in buffer solutions containing sodium or potassium hydrogen oxalate, oxalate and chloride. These equations apply at temperatures from 0 to 60 °C up to ionic strengths of 1.0 mol⋅kg−1 and they have been based on single-ion activity coefficient equations of the Hückel type. For the equations for K m1, the activity parameters of oxalate species and the K a1 values were determined at various temperatures from the Harned cell data of a recent tetroxalate buffer paper (Juusola et al., J. Chem. Eng. Data 52:973–976, 2007). By using the resulting equations for K m1, the activity parameters of oxalate species for K m2 and the K a2 values were then determined from the new Harned cell data and from those of Pinching and Bates (J. Res. Natl. Bur. Stand. (U.S.) 40:405–416, 1948) for solutions of sodium or potassium oxalates with NaCl or KCl. The resulting simple equations for calculation of K m1 and K m2 for oxalic acid were tested with all important thermodynamic data available in the literature for this purpose. The equations for ln (K a1) and ln (K a2) are of the form ln (K a)=a+b(t/°C)+c(t/°C)2. The coefficients for ln (K a1) are the following: a=−2.8737, b=0.000159, and c=−0.00009. The corresponding coefficients for ln (K a2) are −9.6563, −0.003059, and −0.000125, respectively. The new activity coefficient equations were used to evaluate the pH values of the tetroxalate buffer solution (i.e., of the 0.05 mol⋅kg−1 KH3C4O8 solution) for comparison with the pH values recommended by IUPAC at temperatures from 0 to 60 °C and to develop a new two-component oxalate pH buffer of 0.01 mol⋅kg−1 KHC2O4+0.05 mol⋅kg−1 Na2C2O4 for which pH values are given from 0 to 60  °C. Values of p(m H) calculated from these equations are tabulated for these buffers as well as for buffer solutions with KCl and KH3C4O8 as the major component and minor component, respectively. Tables of p(m H) are also presented for 0.001 mol⋅kg−1 KHC2O4+0.005 mol⋅kg−1 Na2C2O4 solutions in which KCl is the supporting electrolyte.  相似文献   

5.
This is the first study of solubility in the NaCl-NH4Cl-KCl-H2O four-component water-salt system at 25, 50, and 75°C. Phase fields of individual salts and potassium and ammonium chloride solid solutions were demarcated. Experimental data were used to develop a mathematical model of the K+, Na+, NH4+/Cl, Cr2O72−-H2O five-component reciprocal system, which includes the title four-component system.  相似文献   

6.
New potassium-conducting solid electrolytes in the mixed gallate-ferrite systems (1 − x)Ga2O3 · xFe2O3 · 0.25TiO2 · K2O and 1.5[(1 − x)Ga2O3 · xFe2O3] · TiO2 · 2K2O are synthesized and studied. The electrolytes exhibit high ionic conductivity in the test temperature range of 300 to 750°C (above 10−2 S/cm at 300°C and above 10−1 S/cm at 700°C). An increase in the conductivity with increasing concentration of iron in the specimens is a general tendency. Possible reasons for the effect of Ga/Fe ratio in the structure of solid electrolytes on their transport properties are discussed.  相似文献   

7.
The kinetics of nucleophilic substitution of pyridine in bis-cationic [Pt(L)(py)]2+ complexes (L=SNS, NNN, NSN) [SNS=bis(methylthiomethyl)pyridine, NNN=bis(2-pyridylmethyl)amine, NSN=bis(2-pyridylmethyl)sulphide] by a series of nucleophiles (Cl, Br, I, N3, (C2H5)2S, NH3, thiourea (tu), NO2, C5H10NH, SeCN, SCN, CN when L=SNS; Cl, Br, I, N3, (C2H5)2S, SCN, NH3, NO2 when L=NNN; Br, N3, NO2, NH3, C5H10NH when L=NSN) have been measured in MeOH at 25 °C, μ =0.1 mol dm−3 (LiClO4 or LiCF3SO3). The logarithms of the second-order rate constants calculated at μ=0, log k° 2, do not follow the dependence upon the n° Pt scale. In particular, the reactivity of the biphilic reagents tu, SeCN, SCN and, to a lesser extent, NO 2, towards these doubly charged substrates is largely lower than expected on the basis of the n° Ptscale. There are good linear relationships between logk° 2 for the bis-cationic substrate [Pt(SNS)(py)]2+, chosen as the standard, and log k° 2 for the same reactions with [Pt(NNN)(py)]2+, [Pt(NSN)(py)]2+ and other double charged complexes previously studied. A new wide nucleophilicity scale based on [Pt(SNS)(py)]2+, that is appropriate to all the bis-cationic substrates, is here proposed  相似文献   

8.
Apparent molar heat capacities and volumes have been determined for aqueous Na2HNTA, Na3NTA, NaMgNTA, NaCoNTA, NaNiNTA and NaCuNTA at 25 °C. The experimental results have been analyzed in terms of Young’s rule with an extended Debye–Hückel equation to obtain standard partial molar heat capacities C p o and volumes V o for the species HNTA2−(aq), NTA3−(aq), MgNTA(aq), CoNTA(aq), NiNTA(aq) and CuNTA(aq), at ionic strengths I = 0 and I = 0.1 mol⋅kg−1. Values of C p o and V o were combined with the literature data to estimate the stability constants of the NTA complexes at temperatures up to 100 °C.  相似文献   

9.
The three molal dissociation quotients for citric acid were measured potentiometrically with a hydrogen-electrode concentration cell from 5 to 150°C in NaCl solutions at ionic strengths of 0.1, 0.3, 0.6, and 1 molal. The molal dissociation quotients and available literature data at infinite dilution were fitted by empirical equations in the all-anionic form involving an extended Debye-Hückel term and up to five adjustable parameters involving functions of temperature and ionic strength. This treatment yielded the following thermodynamic quantitites for the first dissociation equilibrium at 25°C: logK 1a=−3.127±0.002, ΔH 1a o =4.1±0.2 kJ-mol−1, ΔS 1a o =−46.3±0.7 J-K−1-mol−1, and ΔCp 1a o =−162±7 J-K−1-mol−1; for the second acid dissociation equilibrium at 25°C: logK 2a =−4.759±0.001, ΔH 2a o =2.2±0.1, ΔS 2a o =−83.8±0.4, and ΔCp 2a o =−192±15, and for the third dissociation equilibrium at 25°C: logK 3a=−6.397±0.002, ΔH 3a o =−3.6±0.2, ΔS 3a o =−134.5±0.7, and ΔCp 3a o =−231±7.  相似文献   

10.
 The hydrolysis of SbCl3 in hydrochloric acid solution (2.0 mol dm-3 HCl) at 0 °C yields an amor-phous product consisting of uniform spherical particles (d∼0.5 μm), which on continuous aging at the same temperature transform to larger crystals, indicated by XRD to be Sb4O5Cl2. In contrast, in the same solution kept at 25 °C crystalline particles of the same composition form directly after an induction period and then grow with time. The final products, obtained at 0 °C and 25 °C consist of aggregated subunits. These powders on calcination in nitrogen are converted to Sb2O3 and in air to Sb2O4. Received: 23 June 1997 Accepted: 1 July 1997  相似文献   

11.
 A lead electrode was studied in 6 and 12 M H3PO4. Oxidation of a freshly polished electrode occurred in the −0.5 to −0.3 V vs. SCE range, and led to PbHPO4 growth on the electrode surface. The dissolution of this layer by electrochemical reduction occurred between −0.5 and −0.7 V. The influence of temperature (20 °C and 65 °C) was investigated and showed that the anodic and the cathodic peaks were increasing, and more markedly for the 12 M H3PO4. The ratio Q cathodic/Q anodic (Q=electrical charge flowing through the electrode) was equal or close to the unity at 20 °C and decreased as the temperature was increased. The influence of Cl, Br and I ions was also evaluated. The addition of Cl and Br predominantly led to Pb5(PO4)3Cl and Pb5(PO4)3Br, respectively, while I led to a mixture of PbI2 and PbHPO4. Received: 18 July 1999 / Accepted: 2 November 1999  相似文献   

12.
Acidobasic properties of purine and pyrimidine bases (adenine, cytosine) and relevant nucleosides (adenosine, cytidine) were studied by means of glass-electrode potentiometry and the respective dissociation constants were determined under given experimental conditions (I = 0.1 M (NaCl), t = (25.0 ± 0.1) °C): adenine (pK HL = 9.65 ± 0.04, pK H2L = 4.18 ± 0.04), adenosine (pK H2L = 3.59 ± 0.05), cytosine (pK H2L = 4.56 ± 0.01), cytidine (pK H2L = 4.16 ± 0.02). In addition, thermodynamic parameters for bases: adenine (ΔH 0 = (−17 ± 4) kJ mol−1, ΔS 0 = (23 ± 13) J K−1 mol−1), cytosine (ΔH 0 = (−22 ± 1) kJ mol−1, ΔS 0 = (13 ± 5) J K−1 mol−1) were calculated. Acidobasic behavior of oligonucleotides (5′CAC-CAC-CAC3′ = (CAC)3, 5′AAA-CCC-CCC3′ = A3C6, 5′CCC-AAA-CCC3′ = C3A3C3) was studied under the same experimental conditions by molecular absorption spectroscopy. pH-dependent spectral datasets were analyzed by means of advanced chemometric techniques (EFA, MCR-ALS) and the presence of hemiprotonated species concerning (C+-C) a non-canonical pair (i-motif) in titled oligonucleotides was proposed in order to explain experimental data obtained according to literature.  相似文献   

13.
The values of the second dissociation constant, pK 2, and related thermodynamic quantities of 3-[N,N-bis (2-hydroxyethyl)amino]-2-hydroxypropanesulfonic acid (DIPSO) have already been reported over the temperature range 5 to 55 °C including 37 °C. This paper reports the pH values of four NaCl-free buffer solutions and four buffer composition containing NaCl salt at I=0.16 mol⋅kg−1. Conventional pa H values are reported for all eight buffer solutions. The operational pH values have been calculated for four buffer solutions recommended as pH standards, at 25 and 37 °C after correcting the liquid junction potentials with the flowing junction cell.  相似文献   

14.
A novel lidocaine ion-selective electrode is prepared, characterized and used in pharmaceutical analysis. The electrode incorporates PVC-membrane with lidocaine-sulfathiazole ion pair complex. The influences of membrane composition, temperature, pH of the test solution, and foreign ions on the electrode performance were investigated. The electrode showed a Nernstian response over a lidocaine concentration range from 1.0 ×10−5 to 1.0 × 10−1 mol L−1 with a slope of 60.1 ± 0.2 mV per decade at 25°C and was found to be very selective, precise, and usable within the pH range 5–9.5. The standard electrode potentials, E o, were determined at 10, 15, 20, 25, 30, 35 and 40°C, and used to calculate the isothermal temperature coefficient (dE o/dT=−0.0003 V °C−1) of the electrode. However, the electrode performance is significantly decreased at temperatures higher than 45°C. The electrode was successfully used for potentiometric determination of lidocaine hydrochloride in pharmaceutical products. The article is published in the original.  相似文献   

15.
Summary The kinetics and mechanism of the reduction of MnO4 by CoW12O4O6− in aqueous HC1O4 were studied. The reaction follows the rate law:-d[MnO inf4 sup− ]/dt = 5K a k[H+][MnO inf4 sup− ][CoW12O4O6−] with K a = 2.99 × 10−3mol−1 dm3 and k = 2.00 ± 0.02 × 103dm6mol−2s−1 at 25°C. Close agreement between k obs and k calc on the basis of Marcus theory suggest an outersphere mechanism operates. Alkali metal ions catalyse the reaction in the order K+ > Na+ > Li+ and this result has been rationalized.  相似文献   

16.
New high-conductance potassium-cation solid electrolytes based on potassium aluminate are synthesized by means of partial substitution of five-charged phosphorus cations for three-charged aluminum cations and investigated. The maximum conductivity in the system K2 − 2x Al2 − x P x O4 is found to equal 5 × 10−3 S cm−1 at 200°C and ∼1 S cm−1 at 700°C, which is one of the best values for potassium solid electrolytes. The principal factors responsible for the high conductance are the stabilization of a high-temperature form of potassium aluminate and the formation of additional vacancies in the potassium sublattice, which occurs during the substitution process Al3+ → P5+ + 2V K . __________ Translated from Elektrokhimiya, Vol. 41, No. 12, 2005, pp. 1501–1504. Original Russian Text Copyright ? 2005 by Burmakin, Shekhtman.  相似文献   

17.
Summary The kinetics of the acid-catalysed hydrolysis of the [(imidazole)4Co(CO3)]+ ion was found to follow the rate law -dln[complex]/dt = k 1 K[H+](1 + K[H +]) in the 25–45 °C range, [H+] 0.05–1.0 m range and I = 1.0m. The reaction sequence consists of a rapid protonation equilibrium followed by the one-end dissociation of the coordinated carbonato ligand (rate-determining step) and subsequent fast release of the monodentate carbonato ligand. The rate parameter values, k 1 and ITK, at 25 °C are 6.48 × 10−3s−1 and 0.31m −1, respectively, and activation parameters for k 1 are ΔH 1 = 86.1 ± 1.2kJ mol−1 and ΔS 1 = 2.1 ± 6.3 J mol−1K−1. The hydrolysis rate increases with increase in ionic strength. The different ways of dealing with the data fit are presented and discussed. The kinetic results are compared with those for the similar cobalt(III) complexes.  相似文献   

18.
The equivalent conductivities of tris-(ethylenediamine)chromium complexes, [Cr(en)3]X3 (where X= Cl, Br, I; en = ethylenediamine) were measured as functions of temperature (278.15 to 328.15 K) and concentration [(1.948 ×10−4 to 10.728 ×10−4 mol⋅dm−3) and (2.282 ×10−4 to 11.246 ×10−4 mol⋅dm−3)] in N,N-dimethylformamide (DMF) and N,N-dimethylacetamide (DMAC), respectively. Equivalent conductivity values for [Cr(en)3]X3 in DMF were found to be higher than those in DMAC. The conductivity data were analyzed with the Robinson-Stokes equations. For [Cr(en)3]X3, the limiting equivalent ionic conductivities of [Cr(en)3]3+ and the ion-association constants (K A) of the ion-pair between [Cr(en)3]3+ and the monovalent halide anions were determined in DMF and DMAC. The values of K A for three complex salts in DMF were higher than those in DMAC. This can be ascribed to an increase of the ion-association constants with a decrease of the relative permittivity of the solvents. The values of K A at 298.15 K decreased in the order Cl> Br> I in DMF and Cl> I> Br in DMAC. The K A values for [Cr(en)3]Cl3 increased with increasing temperature in both DMF and DMAC. For [Cr(en)3]X3(X= Br, I) in both solvents, this indicates increasing disorder occurs with increasing temperature. Thermodynamic parameters (standard Gibbs energy, enthalpy and entropy changes) were determined from the temperature dependence of K A in DMF and DMAC. These parameters were inter-compared in their dependences on temperature and solvent.  相似文献   

19.
An O-bonded sulphito complex, Rh(OH2)5(OSO2H)2+, is reversibly formed in the stoppedflow time scale when Rh(OH2) 6 3+ and SO2/HSO 3 buffer (1 <pH< 3) are allowed to react. For Rh(OH2)5OH2++ SO2 □ Rh(OH2)5(OSO2H)2+ (k1/k-1), k1 = (2.2 ±0.2) × 103 dm3 mol−1 s−1, k1 = 0.58 ±0.16 s−1 (25°C,I = 0.5 mol dm−3). The protonated O-sulphito complex is a moderate acid (K d = 3 × 10−4 mol dm−3, 25°C, I= 0.5 mol dm−3). This complex undergoes (O, O) chelation by the bound bisulphite withk= 1.4 × 10−3 s−1 (31°C) to Rh(OH2)4(O2SO)+ and the chelated sulphito complex takes up another HSO 3 in a fast equilibrium step to yield Rh(OH2)3(O2SO)(OSO2H) which further undergoes intramolecular ligand isomerisation to the S-bonded sulphito complex: Rh(OH2)3(O2SO)(OSO2)- → Rh(OH2)3(O2SO)(SO3) (k iso = 3 × 10−4 s−1, 31°C). A dinuclear (μ-O, O) sulphite-bridged complex, Na4[Rh2(μ-OH)2(OH)2(μ-OS(O)O)(O2SO)(SO3) (OH2)]5H2O with (O, O) chelated and S-bonded sulphites has been isolated and characterized. This complex is sparingly soluble in water and most organic solvents and very stable to acid-catalysed decomposition  相似文献   

20.
The crystallization kinetic of the basalt glass ceramic of the oxide composition, (%): SiO2 − 50.82; Al2O3 − 12.05; Fe2O3 − 9.28; CaO − 15.48; MgO − 11.08; Na2O+K2O − 1.14; TiO2 − 0.15, with addition of 10% TiO2 as nucleating agent has been studied using thermal analysis under non-isothermal conditions. In this order, the non-isothermal DTA curves were obtained at different heating rates between 4 and 20°C min−1 in the temperature range of 25–1000°C using a Derivatograph-C (MOM, Hungary). The kinetic parameters of the crystallization process were calculated on the basis of Ozawa-Flynn-Wall, Friedman, Budrugeac-Segal and non-parametric kinetic methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号