首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine structure-optical property relationships in asymmetric platinum acetylide complexes, we synthesized the compounds trans-Pt(PBu3)2(C[triple bond]CC6H5)(C[triple bond]C-C6H4-C[triple bond]CC6H5) (PE1-2), trans-Pt(PBu3)2(C[triple bond]CC6H5)(C[triple bond]C-C6H4-C[triple bond]C-C6H4-C[triple bond]CC6H5) (PE1-3) and trans-Pt(PBu3)2(C[triple bond]C-C6H4-C[triple bond]CC6H5)(C[triple bond]C-C6H4-C[triple bond]C-C6H4-C[triple bond]CC6H5) (PE2-3) that have different ligands on either side of the platinum and compared their spectroscopic properties to the symmetrical compounds PE1, PE2 and PE3. We measured ground state absorption, fluorescence, phosphorescence and triplet state absorption spectra and performed density functional theory (DFT) calculations of frontier orbitals, lowest lying singlet states, triplet state geometries and energies. The absorption and emission spectra give evidence the singlet exciton is delocalized across the central platinum atom. The phosphorescence from the asymmetric complexes comes from the largest ligand. Time-dependent (TD) DFT calculations show the S1 state has mostly highest occupied molecular orbital (HOMO) --> lowest unoccupied molecular orbital (LUMO) character, with the LUMO delocalized over the chromophore. In the asymmetric chromophores, the LUMO resides on the larger ligand, suggesting the S1 state has interligand charge transfer character. The triplet state geometries obtained from the DFT calculations show distortion on the lowest energy ligand, whereas the other ligand has the ground state geometry. The calculated trend in the triplet state energies agrees very well with the experimental trend. Calculations of triplet state spin density also show the triplet exciton is confined to one ligand. In the asymmetric complexes the spin density is confined to the largest ligand. The results show Kasha's rule applies to these complexes, where the triplet exciton moves to the lowest energy ligand.  相似文献   

2.
The effect of interchain interaction on the triplet excited state is explored in two Pt-acetylide polymers of the type [-trans-Pt(PBu(3))(2)-C triple bond C-Ar-C triple bond C-](n), where Ar is either 1,4-phenylene or is based on the pentiptycene unit (polymers 2 and 3, respectively). To explore the effect of interchain interaction in Pt-acetylide materials, the optical properties of parent polymer 2 are compared with those of polymer 3 in which interchain interaction is precluded by the sterically bulky pentiptycene moiety. Insight into the effect of the pentiptycene unit on packing in the solid state comes from the X-ray structure of monomer 1b, Ph-C triple bond C-[trans-Pt(PBu(3))(2)]-C triple bond C-Ar-C triple bond C-[trans-Pt(PBu(3))(2)]-C triple bond C-Ph. Spectroscopic studies indicate that weak phosphorescence emission from an interchain aggregate is observed from parent polymer 2, both in solution and in the solid state. By contrast, the photophysics of 3 is dominated by the intrachain triplet exciton. Interestingly, the phosphorescence emission of polymer 3 in the solid state is nearly superimposable with that of a single crystal of monomer 1b, suggesting that the solid polymer experiences an environment that is similar to that of the monomer in the crystal.  相似文献   

3.
As part of an effort to develop a spectroscopic structure-property relationship in platinum acetylide oligomers, we have prepared a series of mesoionic bidentate Pt(PBu3)2L2 compounds containing sydnone groups. The ligand is the series o-Syd-(C6H4-C[triple bond]C)n-H, where n = 1-3, designated as Syd-PEn-H. The terminal oligomer unit consists of a sydnone group ortho to the acetylene carbon. We synthesized the platinum complex (Syd-PEn-Pt), the unmodified ligands (PEn-H), and the unmodified platinum complexes (PEn-Pt). The compounds were characterized by various methods, including X-ray diffraction, 13C NMR, ground-state absorption, fluorescence, phosphorescence, and laser flash photolysis. From solving the structure of Syd-PE1-Pt, we find the angle between the sydnone group and the phenyl group is 45 degrees . By comparison of the 13C NMR spectra of the sydnone-containing ligands, the sydnone complexes with the corresponding unmodified ligands and complexes not containing the sydnone group, the sydnone group is shown to polarize the nearest acetylenes and have a charge-transfer interaction with the platinum center. Ground-state absorption spectra of the complexes in various solvents give evidence that the Syd-PE1-Pt complex has an excited state less polar than the ground state, while the PE1-Pt complex has an excited state more polar than the ground state. In all the higher complexes the excited state is more polar than the ground state. The phosphorescence spectrum of the Syd-PE1-Pt complex has an intense vibronic progression distinctly different from the PE1-Pt complex. The sydnone effect is small in Syd-PE2-Pt and negligible in Syd-PE3-Pt. From absorption and emission spectra, we measured the singlet-state energy E(S), the triplet-state energy E(T), and the singlet-triplet splitting Delta E(ST). By comparison with energies obtained from the unmodified complexes, attachment of the sydnone lowers E(S) by approximately 0.1 eV and raises E(T) by approximately 0.1 eV. As a result, the sydnone group lowers Delta E(ST) by approximately 0.2 eV. The trends suggest one of the triplet-state singly occupied molecular orbitals (SOMOs) is localized on the sydnone group, while the other SOMO resides on the rest of the ligand.  相似文献   

4.
A series of monodisperse Pt-acetylide polymers that contain the [-CC-(p-C6H4)-CC-(t-Pt(PBu3)2)-]n repeat unit has been prepared for n = 1, 2, 3, 4, 5, and 7. The photophysical properties of the series provide information concerning the relationship between the oligomer length and delocalization in the singlet and triplet excited states of the pi-conjugated electron system. The results imply that the singlet excited state is delocalized over approximately 6 repeat units; however, the triplet state is considerably more localized. The triplet energy is almost invariant with oligomer length, but the phosphorescence spectra and triplet nonradiative decay rates indicate that the electron-vibrational coupling in the triplet state decreases with increasing oligomer length.  相似文献   

5.
The ultrafast excited-state dynamics of three structurally related platinum(II) complexes has been investigated using femtosecond transient absorption spectrometry in 2-methyltetrahydrofuran (MTHF). Previous work has shown that Pt(dbbpy)(C[triple bond]C-Ph)2 (dbbpy is 4,4'-di(tert-butyl)-2,2'-bipyridine and C[triple bond]C-Ph is ethynylbenzene) has a lowest metal-to-ligand charge transfer (3MLCT) excited state, while the multichromophoric Pt(dbbpy)(C[triple bond]C-pyrene)2 (CC-pyrene is 1-ethynylpyrene) contains the MLCT state, but possesses a lowest intraligand (3IL) excited state localized on one of the CC-pyrenyl units (Pomestchenko, I. E.; Luman, C. R.; Hissler, M.; Ziessel, R.; Castellano, F. N. Inorg. Chem. 2003, 42, 1394-96). trans-Pt(PBu3)2(C[triple bond]C-pyrene)2 serves as a model system that provides a good representation of the CC-pyrene-localized 3IL state in a Pt(II) complex lacking the MLCT excited state. Following 400 nm excitation, the formation of the 3MLCT excited state in Pt(dbbpy)(C[triple bond]C-Ph)2 is complete within 200 +/- 40 fs, and intersystem crossing to the 3IL excited state in trans-Pt(PBu3)2(C[triple bond]C-pyrene)2 occurs with a time constant of 5.4 +/- 0.2 ps. Selective excitation into the low-energy MLCT bands in Pt(dbbpy)(C[triple bond]C-pyrene)2 (lambda(ex) = 480 nm) leads to the formation of the 3IL excited state in 240 +/- 40 fs, suggesting ultrafast wire-like energy migration in this molecule. The kinetic data suggest that the presence of the MLCT states in Pt(dbbpy)(C[triple bond]C-pyrene)2 markedly accelerates the formation of the triplet state of the pendant pyrenylacetylide ligand. In essence, the triplet sensitization process is kinetically faster than pure intersystem crossing in trans-Pt(PBu3)2(CC-pyrene)2 as well as vibrational relaxation in the MLCT excited state of Pt(dbbpy)(C[triple bond]C-Ph)2. These results are potentially important for the design of chromophores intended to reach their lowest excited state on subpicosecond time scales and advocate the likelihood of wire-like behavior in triplet-triplet energy transfer.  相似文献   

6.
7.
The ion radicals of two series of platinum acetylide oligomers have been subjected to study by electrochemical and pulse radiolysis/transient absorption methods. One series of oligomers, Ptn, has the general structure Ph-C[triple bond]C-[Pt(PBu3)2-C[triple bond]C-(1,4-Ph)-C[triple bond]C-]n-Pt(PBu3)2-C[triple bond]C-Ph (where x=0-4, Ph=phenyl and 1,4-Ph=1,4-phenylene). The second series of oligomers, Pt4Tn, contain a thiophene oligomer core, -C[triple bond]C-(2,5-Th)n-C[triple bond]C- (where n=1-3 and 2,5-Th=2,5-thienylene), capped on both ends with -Pt(PBu3)2-C[triple bond]C-(1,4-Ph)-C[triple bond]C-Pt(PBu3)2-C[triple bond]C-Ph segments. Electrochemical studies reveal that all of the oligomers feature reversible or quasi-reversible one-electron oxidation at potentials less than 1 V versus SCE. These oxidations are assigned to the formation of radical cations on the platinum acetylide chains. For the longer oligomers multiple, reversible one-electron waves are observed at potentials less than 1 V, indicating that multiple positive polarons can be produced on the oligomers. Pulse-radiolysis/transient absorption spectroscopy has been used to study the spectra and dynamics of the cation and anion radical states of the oligomers in dichloroethane and tetrahydrofuran solutions, respectively. All of the ion radicals exhibit two allowed absorption bands: one in the visible region and the second in the near-infrared region. The ion radical spectra shift with oligomer length, suggesting that the polarons are delocalized to some extent on the platinum acetylide chains. Analysis of the electrochemical and pulse radiolysis data combined with the density functional theory calculations on model ion radicals provides insight into the electronic structure of the positive and negative ion radical states of the oligomers. A key conclusion of the work is that the polaron states are concentrated on relatively short oligomer segments.  相似文献   

8.
In this work we detail the photophysical properties of a series of butadiynes having the formula H-(C6H4-C[triple bond]C)n-(C[triple bond]C-C6H4)n-H, n=1-3 and ligands H-(C6H4-C[triple bond]C)n-H, n=1-3 and compare these to previous work done on a complimentary series of platinum-containing complexes having the formula trans-Pt[(PC4H9)3]2[(C[triple bond]-C6H4)n-H]2, n=1-3. We are interested in understanding the role of the platinum in the photophysical properties. We found that there is conjugation through the platinum in the singlet states, but the triplet states show more complex behavior. The T1 exciton, having metal-to-ligand charge-transfer character, is most likely confined to one ligand but the Tn exciton appears to have ligand-to-metal charge-transfer character. The platinum effect was largest when n=1. When n=2-3, the S0-S1,S1-S0,T1-S0, and T1-Tn spectral properties of the platinum complex are less influenced by the metal, becoming equivalent to those of the corresponding butadiynes. When n=1, platinum decreases the triplet state lifetime, but its effect diminishes as n increases to 2.  相似文献   

9.
A novel approach based on conjugation interruption has been developed and is presented for a series of luminescent and thermally stable chalcogen-bridged platinum(II) polyyne polymers trans-[{-Pt(PBu3)2C[triple bond]C(C6H4)E(C6H4)C[triple bond]C-}n] (E = O, S, SO, SO2). Particular attention was focused on the photophysical properties of these Group 10 polymetallaynes and comparison was made to their binuclear model complexes trans-[Pt(Ph)(PEt3)2C[triple bond]C(C6H4)E(C6H4)C[triple bond]CPt(Ph)(PEt3)2] and their closest Group 11 gold(I) and Group 12 mercury(II) neighbours, [MC[triple bond]C(C6H4)E(C6H4)C[triple bond]CM] (M = Au(PPh3), HgMe; E = O, S, SO, SO2). The regiochemical structures of these angular-shaped molecules were studied by NMR spectroscopy and single-crystal X-ray structural analyses. Upon photoexcitation, each one has an intense purple-blue fluorescence emission near 400 nm in dilute fluid solutions at room temperature. Harvesting of the organic triplet emissions harnessed through the strong heavy-atom effects of Group 10-12 transition metals was studied in detail. These metal-containing aryleneethynylenes spaced by chalcogen units were found to have large optical gaps and high-energy triplet states. The influence of metal- and chalcogen-based conjugation interrupters on the intersystem crossing rate and on the spatial extent of the lowest singlet and triplet excitons was fully elucidated. We discuss and compare the phosphorescence spectra of these transition-metal diynes and polyynes in terms of the nature of the metal centre, conjugated chain length and Group 16 spacer unit. Our work here indicates that high-energy triplet states in these materials intrinsically give rise to very efficient phosphorescence with fast radiative decays and one could readily observe room-temperature phosphorescence for the platinum polyynes.  相似文献   

10.
The electronic states of different conformations of platinum acetylides Pt(PH3)2(C[triple bond]C-Ph)2 and Pt(PH3)2(C[triple bond]C-PhC[triple bond]C-Ph)2 (PE1 and PE2) were calculated with density functional theory (DFT) using effective core potential basis sets. Time dependent DFT calculations of UV absorption spectra showed strong dependence of the intense absorption band maxima on mutual orientation of the phenyl rings with respect to the P-Pt-P axis. Geometry optimization of the first excited triplet state (T1) indicates broken symmetry structure with the excitation being localized in one ligand. This splits the two substitution ligands into a nondistorted aromatic ring with the C[triple bond]C-Ph bonds for one side and into a quinoid structure with a cumulenic C=C=C link on the other side. Quadratic response (QR) calculations of spin-orbit coupling and phosphorescence radiative lifetime (tauR) indicated a good agreement with experimental tauR values reported for solid PE1 and PE2 and PE2 capped with dendrimers in tetrahydrofuran solutions. The QR calculations reproduced an increase of tauR upon prolongation of pi chain of ligands and concommittant redshift of the phosphorescence. Moreover, it is shown how the phosphorescence borrows intensity from sigma-->pi* transitions localized at the C[triple bond]C-Pt-P fragments and that there is no intensity borrowing from delocalized pi-->pi* transitions.  相似文献   

11.
Multichromophoric arrays provide one strategy for assembling molecules with intense absorptions across the visible spectrum but are generally focused on systems that efficiently produce and manipulate singlet excitations and therefore are burdened by the restrictions of (a) unidirectional energy transfer and (b) limited tunability of the lowest molecular excited state. In contrast, we present here a multichromophoric array based on four boron dipyrrins (BODIPY) bound to a platinum benzoporphyrin scaffold that exhibits intense panchromatic absorption and efficiently generates triplets. The spectral complementarity of the BODIPY and porphryin units allows the direct observation of fast bidirectional singlet and triplet energy transfer processes (k(ST)((1)BDP→(1)Por) = 7.8 × 10(11) s(-1), k(TT)((3)Por→(3)BDP) = 1.0 × 10(10) s(-1), k(TT)((3)BDP→(3)Por) = 1.6 × 10(10) s(-1)), leading to a long-lived equilibrated [(3)BDP][Por]?[BDP][(3)Por] state. This equilibrated state contains approximately isoenergetic porphyrin and BODIPY triplets and exhibits efficient near-infrared phosphorescence (λ(em) = 772 nm, Φ = 0.26). Taken together, these studies show that appropriately designed triplet-utilizing arrays may overcome fundamental limitations typically associated with core-shell chromophores by tunable redistribution of energy from the core back onto the antennae.  相似文献   

12.
To explore spectroscopic structure-property relationships in platinum acetylides, we synthesized a series of complexes having the molecular formula trans-bis(tributylphosphine)-bis(4-((9,9-diethyl-7-ethynyl-9H-fluoren-2-yl)ethynyl)-R)-platinum. The substituent, R = NH(2), OCH(3), N(phenyl)(2), t-butyl, CH(3), H, F, benzothiazole, CF(3), CN, and NO(2), was chosen for a systematic variation in electron-donating and -withdrawing properties as described by the Hammett parameter σ(p). UV/vis, fluorescence, and phosphorescence spectra, transient absorption spectra on the fs-ps time scale, and longer time scale flash photolysis on the ns time scale were collected. DFT and TDDFT calculations of the T(1) and S(1) energies were performed. The E(S) and E(T) values measured from linear spectra correlate well with the calculated results, giving evidence for the delocalized MLCT character of the S(1) state and confinement of the T(1) exciton on one ligand. The calculated T(1) state dipole moment ranges from 0.5 to 14 D, showing the polar, charge-transfer character of the T(1) state. The ultrafast absorption spectra have broad absorption bands from 575 to 675 nm and long wavelength contribution, which is shown from flash photolysis measurements to be from the T(1) state. The T(1) energy obtained from phosphorescence, the T(1)-T(n) transition energy obtained from flash photolysis measurements, and the triplet-state radiative rate constant are functions of the calculated spin density distribution on the ligand. The calculations show that the triplet exciton of chromophores with electron-withdrawing substituents is localized away from the central platinum atom, red-shifting the spectra and increasing the triplet-state lifetime. Electron-donating substituents have the opposite effect on the location of the triplet exciton, the spectra, and the triplet-state lifetime. The relation between the intersystem crossing rate constant and the S(1)-T(1) energy gap shows a Marcus relationship with a reorganization energy of 0.83 eV. The calculations show that intersystem crossing occurs by conversion from a nonpolar, delocalized S(1) state to a polar, charge-transfer T(1) state confined to one ligand, accompanied by conformation changes and charge transfer, supporting the experimental evidence for Marcus behavior.  相似文献   

13.
Triplet states of poly(phenylene ethynylene), (3)PPE(*), not easily formed by direct photoexcitation, were produced by pulse radiolysis in toluene, along with triplet states of T(3)PPE having terthiophene end-caps. Intense triplet-triplet absorption maxima, epsilon(680)((3)PPE(*)) = 9.5 x 10(4) M(-1) cm(-1) and epsilon(780)((3)T(3)PPE(*)) = 2.8 x 10(4) M(-1) cm(-1) enable identification of these two species, which have triplet energies of 2.12 and 1.77 eV determined in bimolecular energy transfer equilibria. Bleaching of ground-state absorption measures (3)PPE(*) to be the delocalized over a 1.8-nm length. Triplet states formed in the PPE chains were transported to and trapped by the end caps in a time <5 ns.  相似文献   

14.
The photophysical properties of [Ir]-[Pt]-[Ir]-[Pt]-[Ir] ([Ir] = [Ir(ppy)(2)(bpy*)](+) ([Pt] = trans-Pt(PBu(3))(2)(C≡C)(2); ppyH = 2-phenylpyridine); bpy* = bipyridyl;) reveal an unprecedented triplet energy transfer from the terminal iridiums to the central Ir subunit.  相似文献   

15.
A series of platinum-acetylide homo- and copolymers was prepared and characterized by using photophysical methods. The polymers feature repeat units of the type [trans-Pt(PBu3)2(-CC-Ar-CC-)], where Ar = 1,4-phenylene (P) or 2,5-thienylene (T). The properties of homopolymers that contain only the 1,4-phenylene or 2,5-thienylene repeat units were compared with those of random copolymers having the structure -[-(Pt(PBu3)2(-CC-T-CC-))x-(Pt(PBu3)2(-CC-P-CC-))(1-x)-)] where x = 0.05, 0.15, and 0.25. Absorption and photoluminescence spectroscopy demonstrates that the singlet and triplet excitations localized on 1,4-phenylene units are higher in energy relative to those localized on the 2,5-thienylene units. The mechanism and dynamics of intrachain triplet energy transfer from 1,4-phenylene to the 2,5-thienylene repeats were explored in the copolymers. Photoluminescence and nanosecond transient absorption spectroscopy indicate that at room temperature P --> T energy transfer is efficient and rapid (k > 10(8) s(-1)), even in the copolymer that contains only 5% 2,5-thienylene repeat units. At 77 K, steady-state and time-resolved photoluminescence spectroscopy reveals that triplet energy transfer is much less efficient and a fraction of the triplet excitations is "trapped" on the high-energy 1,4-phenylene units. Intrachain energy transfer is believed to occur by two mechanisms, one involving P --> T singlet energy transfer followed by intersystem crossing, whereas the other involves intersystem crossing prior to P --> T triplet energy transfer. The relationship between the observed energy transfer efficiencies and mechanisms in the copolymers is discussed.  相似文献   

16.
The fullerene end-capped platinum acetylide donor-acceptor triad Pt(2)ThC(60) was synthesized and characterized by using photophysical methods and photovoltaic device testing. The triad consists of the platinum acetylide oligomer Ph-[triple bond, length as m-dash]-Pt(PBu3)2-[triple bond, length as m-dash]-Th-[triple bond, length as m-dash]-Pt(PBu3)2-[triple bond, length as m-dash]-Ph (Ph=phenyl and Th=2,5-thienyl, stereochemistry at both Pt centers is trans) that contains fulleropyrrolidine moieties on each of the terminal phenylene units. Electrochemistry of the triad reveals relatively low potential oxidation and reduction waves corresponding, respectively, to oxidation of the platinum acetylide and reduction of the fulleropyrrolidine units. Photoluminescence spectroscopy shows that the singlet and triplet states of the platinum acetylide chromophore are strongly quenched in the triad assembly, both in solution at ambient temperature as well as in a low-temperature solvent glass. The excited state quenching arises due to intramolecular photoinduced electron transfer to produce a charge separated state based on charge transfer from the platinum acetylide (donor) to the fulleropyrrolidine (acceptor). Picosecond time resolved absorption spectroscopy confirms that the charge transfer state is produced within 1 ps of photoexcitation, and it decays by charge recombination within 400 ps. Organic photovoltaic devices fabricated using spin-coated films of Pt2ThC60 as the active material operate with modest efficiency, exhibiting a short circuit photocurrent of 0.51 mA cm(-2) and an open circuit voltage of 0.41 V under 100 mW cm(-2)/AM1.5 illumination. The results are discussed in terms of the relationship between the mechanism of photoinduced electron transfer in the triad and the comparatively efficient photovoltaic response exhibited by the material.  相似文献   

17.
The series of polyynes with the structure trans, trans-[Ar-Pt(P 2)-(C[triple bond]C) n -Pt(P 2)-Ar], where P = tri( p-tolyl)phosphine, Ar = p-tolyl, and n = 3, 4, 5, 6 (6, 8, 10, 12 sp carbon atoms), has been subjected to a comprehensive photophysical investigation. At low temperature ( T < 140 K) in a 2-methyltetrahydrofuran (MTHF) glass, the complexes exhibit moderately efficient phosphorescence appearing as a series of narrow (fwhm < 200 cm (-1)) vibronic bands separated by ca. 2100 cm (-1). The emission is assigned to a (3)pi,pi* triplet state that is concentrated on the sp carbon chain, and the vibronic progression arises from coupling of the excitation to the -C[triple bond]C- stretch. The 0-0 energy of the phosphorescence decreases with increasing sp carbon chain length, spanning a range of over 6000 cm (-1) across the series. Transient absorption spectroscopy carried out at ambient temperature confirms that the (3)pi,pi* triplet is produced efficiently, and it displays a strongly allowed triplet-triplet absorption. In the MTHF solvent glass ( T < 140 K), the emission lifetimes increase with emission energy. Analysis of the triplet nonradiative decay rates reveals a quantitative energy gap law correlation. The nonradiative decay rates can be calculated by using parameters recovered from a single-mode Franck-Condon fit of the emission spectra.  相似文献   

18.
Several important photophysical properties of the cyanine dye Cy3 have been determined by laser flash photolysis. The triplet-state absorption and photoisomerization of Cy3 are distinguished by using the heavy-atom effects and oxygen-induced triplet --> triplet energy transfer. Furthermore, the triplet-state extinction coefficient and quantum yield of Cy3 are also measured via triplet-triplet energy-transfer method and comparative actinometry, respectively. It is found that the triplet --> triplet (T1-->Tn) absorptions of trans-Cy3 largely overlap the ground-state absorption of cis-Cy3. Unlike what occurred in Cy5, we have not observed the triplet-state T1-->Tn absorption of cis-Cy3 and the phosphorescence from triplet state of cis-Cy3 following a singlet excitation (S0-S1) of trans-Cy3, indicating the absence of a lowest cis-triplet state as an isomerization intermediate upon excitation in Cy3. The detailed spectra of Cy3 reported in this paper could help us interpret the complicated photophysics of cyanine dyes.  相似文献   

19.
The bent d(0) titanium metallocene (Cp)(2)Ti(NCS)(2) exhibits an intense phosphorescence from a ligand-to-metal charge transfer triplet excited state at 77 K in an organic glass substrate and a poly(methyl methacrylate) plastic substrate. Quantum chemical calculations and spectroscopic studies show that the orbital parentage of this triplet state arises from the promotion of an electron from an essentially nonbonding symmetry adapted pi molecular orbital located on the NCS(-) ligands to a d(z)2-(y)2 orbital located on the Ti metal. Standard infrared spectroscopy of (Cp)(2)Ti(NCS)(2) in its ground electronic state at 77 K reveals a pair of closely spaced absorptions at (2072 cm(-1), 2038 cm(-1))(glass) and (2055 cm(-1), 2015 cm(-1))(plastic) that are assigned, respectively, to the symmetric and antisymmetric CN stretching modes of the two coordinated NCS(-) ligands. Low-temperature (77 K) time-resolved infrared spectroscopy that accesses the phosphorescing triplet excited state on the ns time scale shows an IR bleach that is coincident with the two ground state CN stretching bands and an associated grow-in of a pair of new IR bands at slightly lower energies (2059 cm(-1), 2013 cm(-1))(glass) and (2049 cm(-1), 1996 cm(-1))(plastic) that are assigned, respectively, to the symmetric and antisymmetric CN stretches in the emitting triplet state. These transient IR bands decay with virtually identical lifetimes to those observed for the phosphorescence decays when measured under identical experimental conditions. Singular value decomposition analysis of the time-resolved infrared data shows that the observed transient IR features arise from the same electronic manifold as measured through luminescence studies. The close similarity between the ground state and excited-state CN stretching bands in (Cp)(2)Ti(NCS)(2) indicates that symmetry breaking does not occur in forming the charge-transfer triplet excited-state manifold; i.e., electron density is withdrawn from a delocalized pi MO spread across both NCS(-) ligands. Calculations at several levels of theory reveal a delocalized ligand-to-metal charge transfer excited triplet manifold. These calculations closely reproduce the relative intensity ratios and frequencies of the symmetric and antisymmetric transient infrared vibrations in the CN region. This study is the first time-resolved infrared investigation of a ligand-to-metal charge-transfer excited state and the first to be performed at cryogenic temperatures in thin-film organic glass and plastic substrates.  相似文献   

20.
A heteroleptic bis(tributylphosphine) platinum(II)‐alkynyl complex ( Pt‐1 ) showing broadband visible‐light absorption was prepared. Two different visible‐light‐absorbing ligands, that is, ethynylated boron‐dipyrromethene (BODIPY) and a functionalized naphthalene diimide (NDI) were used in the molecule. Two reference complexes, Pt‐2 and Pt‐3 , which contain only the NDI or BODIPY ligand, respectively, were also prepared. The coordinated BODIPY ligand shows absorption at 503 nm and fluorescence at 516 nm, whereas the coordinated NDI ligand absorbs at 594 nm; the spectral overlap between the two ligands ensures intramolecular resonance energy transfer in Pt‐1 , with BODIPY as the singlet energy donor and NDI as the energy acceptor. The complex shows strong absorption in the region 450 nm–640 nm, with molar absorption coefficient up to 88 000 M ?1 cm?1. Long‐lived triplet excited states lifetimes were observed for Pt‐1 – Pt‐3 (36.9 μs, 28.3 μs, and 818.6 μs, respectively). Singlet and triplet energy transfer processes were studied by the fluorescence/phosphorescence excitation spectra, steady‐state and time‐resolved UV/Vis absorption and luminescence spectra, as well as nanosecond time‐resolved transient difference absorption spectra. A triplet‐state equilibrium was observed for Pt‐1 . The complexes were used as triplet photosensitizers for triplet–triplet annihilation upconversion, with upconversion quantum yields up to 18.4 % being observed for Pt‐1 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号