首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
研究了亚硫酸盐在乙酰二茂铁(AFc)修饰碳糊电极(AFc/CPE)上的电催化行为。研究结果表明,其在裸碳糊电极(CPE)上的行为比亚硫酸盐在AFc/CPE上的氧化峰电流增加约3倍,氧化峰电位负移360 mV,表明AFc/CPE对亚硫酸盐的电化学氧化具有良好的催化作用。用循环伏安法、计时电流法测定了亚硫酸盐在AFc/CPE上的电极过程动力学参数,测得电荷传递系数α为0.70,电催化氧化反应速率常数k为(4.91±0.05)×104(mol/L)-1.s-1。催化氧化峰电流与亚硫酸盐在5.0×10-4~1.1×10-2mol/L浓度范围内呈良好的线性关系,线性回归方程为Ipa(μA)=1.345 7.956c(10-3mol/L),R=0.9988,检出限为2.0×10-5mol/L。可用于亚硫酸盐的电化学定量测定方法。  相似文献   

2.
研究了双酚A(BPA)在十二烷基硫酸钠(SDS)现场自组装膜与离子液体N-丁基吡啶夫氟磷酸盐([ bupy]PF6)复合修饰碳糊电极(SDS-[ bupy]PF6/CPE)上的电催化氧化行为和电化学动力学性质.实验结果表明,在SDS-[ bupy]PF6/CPE上BPA发生了一受扩散控制的不可逆电化学氧化过程,用循环伏安(CV)法和计时电流(CA)法测得BPA在SDS-[bupy]PF6/CPE上的电极反应过程动力学参数.用方波伏安(SWV)法测得BPA氧化峰电流(Ipa)与其浓度在1.0×10-5~ 1.0×10-3 mol/L范围内呈良好的线性关系,线性方程为Ipa(μA) =2.635 +51.30c( 10-3 mol/L),r =0.998 1,检测限(S/N=3)为3.01×10-7 mol/L,同时运用SWV法对湖水样品中双酚A的含量进行了电化学定量测定.  相似文献   

3.
通过化学共沉淀法制备了CuO-NiO复合氧化物。在最优条件下,该复合物修饰玻碳电极对葡萄糖检测的线性范围为2×10-6~4.1×10-3mol/L;灵敏度为4116μA·L·mmol-1·cm-2;检测限为0.2μmol/L(S/N=3)。传感器可用于葡萄糖检测。  相似文献   

4.
基于盐酸曲马多对联吡啶钌(Ru(bpy)32+)的电化学发光信号有较强的增敏作用, 建立了一种多壁碳纳米管/壳聚糖-联吡啶钌复合物修饰的石墨电极上电化学发光检测盐酸曲马多的电化学发光新方法. 通过循环伏安扫描结果表明, 多壁碳纳米管表现出极好的电分析活性, 对联吡啶钌具有较好的电催化作用, 并可应用于盐酸曲马多药物的测定. 在最佳实验条件下, 测定曲马多浓度在6.0×10-4~5.0×10-6 mol/L与相对发光强度成线性关系(r=09982), 检出限(S/N=3)为2.0×10-6 mol/L. 连续平行测定曲马多溶液(5.0×11-5 mol/L) 8次, 发光强度的RSD为3.1%.  相似文献   

5.
采用自组装的方法制备了纳米银粒子修饰金电极,并运用循环伏安法、交流阻抗谱探讨了该电极的电化学特性.研究了高氯酸二茂铁在该修饰电极上的直接电化学行为.实验结果表明,高氯酸二茂铁在该修饰电极上具有良好的电流响应.用示差脉冲法测定高氯酸二茂铁,其氧化峰电流与浓度在4.0×10-6~5.0×10-4 mol/L范围呈良好线性关系,线性方程为:Ip(μA)=0.0236c(μmol/L)-0.0975,线性相关系数为0.9982,检出限为2.3×10-7 mol/L(信噪比为3).  相似文献   

6.
具有共轭结构的分子导线是构筑分子电子器件的重要组成单元,而含有二茂铁单元的该类化合物具有良好的电化学性质,被广泛研究。基于此,本实验通过Sonogashira交叉偶联等反应合成了一种新型二茂铁乙炔衍生物( Fc-NH2),并经红外( IR)、核磁共振(1 H NMR和13 C NMR)、质谱( MS)和循环伏安( CV)等方法表征。利用Fc-NH2与石墨烯-壳聚糖( GH-CS)之间的相互作用制备了GH-CS/Fc-NH2复合物,并成功用于细胞色素c(Cytc)的固定,得到GH-CS/Fc-NH2/Cytc修饰电极。研究表明,GH-CS/Fc-NH2/Cytc/GCE在-0.2 V附近出现一对峰,对应于Cytc的可逆氧化还原峰。此电极对NaNO2有良好的电催化作用,在1×10-7~1.5×10-4 mol/L范围内,NaNO2浓度与氧化峰电流呈良好的线性关系,检测限低至4×10-8mol/L。此修饰电极不但可以实现细胞色素c的直接电化学,也可以用于定量检测NaNO2。  相似文献   

7.
研究了L-半胱氨酸(L-cysteine,L-Cys)在乙酰二茂铁(acetylferrocene,Afc)修饰碳糊电极(Afc/CPE)上的电催化行为.研究结果表明,Afc/CPE对L-Cys的电化学氧化具有良好的催化作用.用循环伏安法(CV)、计时电流法(CA)测定了L-Cys在Afc/CPE上的电极过程动力学参数.测得Afc分散于液体石蜡中表观扩散系数Dapp=9.49×10-9 cm-2·s-1,电荷传递系数α=0.59,电催化氧化反应速率常数k=(3.76±0.10)×103(mol·L-1)-1·s-1.催化氧化峰电流与L-Cys在浓度8.0×10-6~1.5×10-3mol·L-1范围内呈良好的线性关系,线性回归方程为Ipa(μA)=3.139 c(mmol·L-1) 4.068,r=0.999 7,检出限为2.5 μmol·L-1.该结果可用于对L-Cys的电化学定量测定.  相似文献   

8.
通过Hummer法进一步还原合成还原石墨烯(RGO),Shifft碱反应合成新型二茂铁巯基化合物(FcSH)。利用还原石墨烯吸附性将石墨烯修饰在玻碳电极(GCE)上,在石墨烯表面电沉积金纳米粒子(AuNPs),通过自组装制备还原石墨烯和二茂铁巯基修饰电化学传感器(FcSH/AuNPs/RGO/GCE),该电化学传感器具有大的比表面积和富电子性能。实验显示,在0.01 mol/L HCl中,富集时间为180s,Cu~(2+)浓度在1.0×10~(-12)~1.0×10~(-11)mol/L与1.0×10~(-11)~1.0×10~(-10)mol/L范围内与方波伏安峰电流分别呈现良好的线性关系,检出限为0.94×10~(-12)mol/L。该电化学传感器对Cu~(2+)的检测表现出较好的选择性、高的稳定性和灵敏性,可用于环境中痕量Cu~(2+)的测定。  相似文献   

9.
制备了石墨烯-壳聚糖复合物修饰玻碳电极(GO/CS-GCE),考察了对乙酰氨基酚(APAP)在修饰电极上的电化学行为,发现石墨烯-壳聚糖复合物能较好改善玻碳电极对APAP的电化学性能,APAP在修饰电极上的电化学反应过程是受吸附控制的2电子,2质子反应过程;进一步研究发现在pH=9.16的碳酸钠-碳酸氢钠缓冲体系中,对乙酰氨基酚在8.00×10-8 mol·L-1~5.00×10-4 mol·L-1内与电流值呈良好的线性关系,线性方程为-i(μA)=0.11371c(μmol·L-1)+105.54(r=0.9996),检出限为2.6×10-8 mol·L-1,该方法线性范围宽,检出限低,测定准确,方法应用于药片中对乙酰氨基酚含量检测,回收率在98%~106%之间,测定效果良好。  相似文献   

10.
聚精氨酸修饰玻碳电极上多巴胺的电化学特性及其检测   总被引:3,自引:0,他引:3  
用循环伏安法制备了聚精氨酸修饰玻碳电极,研究了神经递质多巴胺在该聚合物薄膜修饰电极上的电化学行为及其检测。在pH7.0的磷酸盐缓冲溶液中,多巴胺在聚精氨酸修饰电极上于0.19V和0.16V处出现一对灵敏、可逆的氧化还原峰。在最佳测试条件下,氧化峰电流与多巴胺的浓度在3.0×10-7~8.0×10-4mol/L范围内呈良好的线性关系,线性回归方程为Ipa(μA)=86.063C(mmol/L) 20.183,相关系数r=0.9993,最低检测限(3σ)5.0×10-8mol/L。用于多巴胺针剂含量的测定,结果满意。  相似文献   

11.
A chitosan (CS)‐tin oxide (SnO2) nanobiocomposite film has been deposited onto an indium‐tin‐oxide glass plate to immobilize cholesterol oxidase (ChOx) for cholesterol detection. The value of the Michaelis–Menten constant (Km) obtained as 3.8 mM for ChOx/CS‐SnO2/ITO is lower (8 mM) than that of a ChOx/CS/ITO bioelectrode revealing enhancement in affinity and/or activity of ChOx towards cholesterol and also revealing strong binding of ChOx onto CS‐SnO2/ITO electrode. This ChOx/CS‐SnO2/ITO cholesterol sensor retains 95% of enzyme activity after 4–6 weeks at 4 °C with response time of 5 s, sensitivity of 34.7 μA/mg dL?1 cm2 and detection limit of 5 mg/dL.  相似文献   

12.
We report a novel composite electrode made of chitosan‐SiO2‐multiwall carbon nanotube (CHIT‐SiO2‐MWNT) composite coated on the indium‐tin oxide (ITO) glass substrate. Cholesterol oxidase (ChOx) was covalently immobilized on the CHIT‐SiO2‐MWNT/ITO electrode that resulted in a ChOx/CHIT‐SiO2‐MWNT/ITO cholesterolactive bioelectrode. The CHIT‐SiO2‐MWNT/ITO and ChOx/CHIT‐SiO2‐MWNT/ITO electrodes were characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The influence of various parameters was investigated, including the applied potential, pH of the medium, and the concentration of the enzyme on the performance of the biosensor. The cholesterol bioelectrode exhibited a sensitivity of 3.4 nA/ mgdL?1 with a response time of five seconds. The biosensor using ChOx/CHIT‐SiO2‐MWNT/ITO as the working electrode retained its original response after being stored for six months. The biosensor using ChOx/CHIT‐SiO2‐MWNT/ITO as the working electrode showed a linear current response to the cholesterol concentration in the range of 50–650 mg/dL.  相似文献   

13.
This study demonstrates the self‐assembly of inhibitor/enzyme‐tethered nucleic acid fragments or enzyme I‐, enzyme II‐modified nucleic acids into functional nanostructures that lead to the controlled inhibition of the enzyme or the activation of an enzyme cascade. In one system, the anti‐cocaine aptamer subunits are modified with monocarboxy methylene blue (MB+) as the inhibitor and with choline oxidase (ChOx). The cocaine‐induced self‐assembly of the aptamer subunits complex results in the inhibition of ChOx by MB+. In a further configuration, two nucleic acids of limited complementarity are functionalized at their 3′ and 5′ ends with glucose oxidase (GOx) and horseradish peroxidase (HRP), respectively, or with MB+ and ChOx. In the presence of a target DNA sequence, synergistic complementary base‐pairing occurs, thus leading to stable supramolecular Y‐shaped nanostructures of the nucleic acid units. A GOx/HRP bienzyme cascade or the programmed inhibition of ChOx by MB+ is demonstrated in the resulting nucleic acid nanostructures. A quantitative theoretical model that describes the nucleic acid assemblies and that results in the inhibition of ChOx by MB+ or in the activation of the GOx/HRP cascade, respectively, is provided.  相似文献   

14.
Cholesterol oxidase (ChOx) was covalently immobilized onto the woven silk fiber (silk mat) produced by Antheraea assamensis. The immobilization was done using N-ethyl-N’-(3-dimethylaminopropyl) carbodimide and N-hydroxysuccinimide ligand chemistry. The attachment of ChOx to the silk mat was demonstrated by scanning electron microscopy and activity study. The kinetic studies of the immobilized ChOx were performed by using a biological oxygen monitor. The enzyme loading was found to be 0.046 U cm?2 of silk mat and the enzyme loading efficiency of the silk mat was estimated to be 70%. Remarkably high storage and operational stability (t1/2 of initial activities) corresponding to 13 months and 25 numbers of assay (for a period of 6 h), respectively, of the fabricated ChOx electrode were demonstrated.  相似文献   

15.
Cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) have been covalently immobilized on electrochemically prepared polyaniline (PANI) films. These PANI/ChEt/ChOx enzyme films have been characterized using UV-visible, Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). Electrochemical behavior of these films has been studied using cyclic voltammetry (CV) and amperometric techniques, respectively. The PANI/ChEt/ChOx enzyme films show broad oxidation peak from 0.2 to 0.5 V. These PANI/ChEt/ChOx biosensing electrodes have a response time of about 40s, linearity from 50 to 500 mg/dl of cholesterol oleate concentration. These PANI/ChEt/ChOx films are thermally stable up to 46 degrees C. This polyaniline based cholesterol biosensor has optimum pH in the range of 6.5-7.5, sensitivity as 7.5x10(-4) nA/mg dl and a lifetime of about 6 weeks.  相似文献   

16.
《Electroanalysis》2017,29(7):1741-1748
The determination of lead ions by inhibition of choline oxidase enzyme has been evaluated for the first time using an amperometric choline biosensor. Choline oxidase (ChOx) was immobilized on a glassy carbon electrode (GCE) modified with multiwalled carbon nanotubes (MWCNT) through cross‐linking with glutaraldehyde. In the presence of ChOx, choline was enzymatically oxidized into betaine at –0.3 V versus Ag/AgCl reference electrode, lead ion inhibition of enzyme activity causing a decrease in the choline oxidation current. The experimental conditions were optimised regarding applied potential, buffer pH, enzyme and substrate concentration and incubation time. Under the best conditions for measurement of the lowest concentrations of lead ions, the ChOx/MWCNT/GCE gave a linear response from 0.1 to 1.0 nM Pb2+ and a detection limit of 0.04 nM. The inhibition of ChOx by lead ions was also studied by electrochemical impedance spectroscopy, but had a narrower linear response range and low sensitivity. The inhibition biosensor exhibited high selectivity towards lead ions and was successfully applied to their determination in tap water samples.  相似文献   

17.
Zhou H  Yang W  Sun C 《Talanta》2008,77(1):366-371
A novel amperometric sensor for the determination of sulfite was fabricated based on multiwalled carbon nanotubes (MWCNTs)/ferrocene-branched chitosan (CHIT-Fc) composites-covered glassy carbon electrode (GCE). The electrochemical behavior of the sensor was investigated in detail by cyclic voltammetry. The apparent surface electron transfer rate constant (Ks) and charge transfer coefficient (α) of the CHIT-Fc/MWCNTs/GCE were also determined by cyclic voltammetry, which were about 1.93 cm s−1 and 0.42, respectively. The sensor displayed good electrocatalytic activity towards the oxidation of sulfite. The peak potential for the oxidation of sulfite was lowered by at least 330 mV compared with that obtained at CHIT/MWCNTs/GCE. In optimal conditions, linear range spans the concentration of sulfite from 5 μM to 1.5 mM and the detection limit was 2.8 μM at a signal-to-noise ratio of 3. The proposed method was used for the determination of sulfite in boiler water. In addition, the sensor has good stability and reproducibility.  相似文献   

18.
A simple, selective and stable biosensor with the enzymatic reactor based on choline oxidase (ChOx) was developed and applied for the determination of choline (Ch) in flow injection analysis with amperometric detection. The enzyme ChOx was covalently immobilized with glutaraldehyde to mesoporous silica powder (SBA‐15) previously covered by NH2‐groups. This powder was found as an optimal filling of the reactor. The detection of Ch is based on amperometric monitoring of consumed oxygen during the enzymatic reaction, which is directly proportional to Ch concentration. Two arrangements of an electrolytic cell in FIA, namely wall‐jet cell with working silver solid amalgam electrode covered by mercury film and flow‐through cell with tubular detector of polished silver solid amalgam were compared. The experimental parameters affecting the sensitivity and stability of the biosensor (i. e. pH of the carrier solution, volume of reactor, amount of the immobilized enzyme, the detection potential, flow rate, etc.) were optimized. Under the optimized conditions, the limit of detection was found to be 9.0×10?6 mol L?1. The Michaelis‐Menten constant for covalently immobilized ChOx on SBA‐15 was calculated. The proposed amperometric biosensor with the developed ChOx‐based reactor exhibits good repeatability, reproducibility, long‐term stability, and reusability. Its efficiency has been confirmed by the successful application for the determination of Ch in two commercial pharmaceuticals.  相似文献   

19.
Choline sensor is successfully prepared by using immobilized enzyme, i.e., choline oxidase (ChOx) within a hybrid mesoporous membrane with 12 nm pore diameter (F127M). The measurement was based on the detection of hydrogen peroxide, which is the co-product of the enzymatic choline oxidation. The determination range and the response time are 5.0-800 μM and approximately 2 min, respectively. The sensor is very stable compared to the native enzyme sensor and 85% of the initial response was maintained even after storage for 80 days. These results indicate that ChOx is successfully immobilized and well stabilized, and at the same time, enzyme reaction proceeds efficiently. Such ability of hybrid mesoporous membrane F127M suggests great promise for effective immobilization of enzyme useful for electrochemical biosensors.  相似文献   

20.
Cholesterol oxidase (ChOx) has been covalently linked to Langmuir-Blodgett (LB) monolayers of polyaniline (PANI)-stearic acid (SA) prepared onto indium-tin-oxide (ITO) coated glass plates via glutaraldehyde (Glu) chemistry. These ChOx/Glu/PANI-SA LB film/ITO electrodes have been characterized by FT-IR, cyclic voltammetry, and scanning electron microscopy, respectively. The results of response measurements carried out on these bioelectrodes using linear sweep voltammetry (LSV) reveal linearity from 25 to 400 mg/dL of cholesterol concentration with sensitivity of 88.9 nA mg(-1) dL. The linear regression analysis of bioelectrode reveals standard deviation and correlation coefficient of 0.737 microA and 0.9988, respectively. The low value of the Michaelis-Menten constant of these bioelectrodes obtained as 1.21 mM for the immobilized enzyme indicates increased interaction between ChOx and cholesterol in the PANI-SA LB film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号