首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Graphene nanosheets are widely used in anti-corrosion polymeric coating as filler,owing to the excellent electrochemical inertness and barrier property.However,as the arrangement of graphene nanosheets is difficult to form a perfect layered structure,polymeric coating with graphene nanosheets usually needs micron-scale thickness to ensure the enhancement of corrosion protection.In this work,layer-by-layer stacked graphene nanocoatings were fabricated on stainless steel by self-assembly based on Marangoni effect.The anti-corrosion property of graphene coatings were studied through Tafel polarization curves,electrochemical impedance spectroscopy and accelerated corrosion test with extra applied voltage.The self corrosion current density of optimized three-layered graphene coated sample was one quarter of that of bare stainless steel.And the self corrosion potential of optimized sample is increased to-0.045 V.According to the results,graphene nanocoatings composed of layered nanosheets exhibits good anticorrosion property.Besides,the self-assembly method provide a promising approach to make layeredstructure coating for other researches about 2 D material nanosheets.  相似文献   

2.
陈宇 《高分子科学》2015,33(1):14-22
Twice-painting technique was adopted to prepare heavy-duty anticorrosive coating films formed by aqueous latexes of copolymers of vinylidene chloride(VDC) with an acrylate, namely methyl acrylate(MA), ethyl acrylate(EA), butyl acrylate(BA) or 2-ethylhexyl acrylate(EHA). Harsh salt-spray corrosion tests demonstrated that the optimized twicepainting technique was that the acidic latex solution was adjusted to p H 5-6 for the first painting, while it was utilized directly for the second painting. The test of 600 h of harsh salt-spray corrosion showed that MA-VDC85 coating could protect the steel excellently, whereas the other acrylate-VDC coatings with 75%-90% VDC content could not protect the steel so effectively. Further corrosion test showed that(1) MA-VDC85 coating protected steel from loss of metallic luster for at least 1000 h of salt-spray corrosion;(2) adhesion of MA-VDC85 coating to steel was excellent for at least 800 h of saltspray corrosion, but became very poor after 1000 h. Differential scanning calorimetry, thermogravimetric analysis, X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy were used to evaluate the corroded MA-VDC85 film.  相似文献   

3.
Polyaniline (PANI) was prepared by the chemical oxidative polymerization of aniline, and ZnO, with the mean particle size of 28 nm, was synthesized by a non-aqueous solvent method. The organic-inorganic PANI/ZnO hybrids with different mass fractions of PANI were obtained by mechanically mixing the prepared PANI and ZnO. The gas sensing properties of PANI/ZnO hybrids to different volatile organic compounds (VOCs) including methanol, ethanol and acetone were investigated at a low operating temperature of 90°C. Compared with the pure PANI and ZnO, the PANI/ZnO hybrids presented much higher response to VOCs. Meanwhile, the PANI/ZnO hybrid exhibited a good reversibility and a short response-recovery time, implying its potential application for gas sensors. The sensing mechanism was suggested to be related to the existence of p-n heterojunctions in the PANI/ZnO hybrids.  相似文献   

4.
Coral reef-like PANI nanotubes composed of nanopaticles were successfully synthesized by a reactive template of manganese oxide.The structure was characterized by using SEM,TEM,and FT-IR,and the supercapacitive behaviors of these nanotubes were investigated with cyclic voltammetry(CV),and charge-discharge tests,respectively.A maximum specific capacitance of 533 F/g could be achieved in 1mol/L aqueous H2SO4 with the potential range of -0.2 to 0.8 V(vs.the saturated calomel electrode) in a half-cell setup configuration for PANI electrode,suggesting its potential application in the electrode material for electrochemical capacitors.  相似文献   

5.
The Raman spectra of poly(3-methylthiophene) (PMeT) films with different thicknesses, which have beenelectrochemically deposited on a flat stainless steel electrode surface by direct oxidation of 3-methylthiophene in borontrifluoride diethyl etherate (BFEE) at a constant applied potential of 1.38 V (versus SCE), have been investigated byexcitation with a 633-nm laser beam. The spectroscopic results demonstrated that the doping level of PMeT film wasincreasing during film growth. This finding was also confirmed by electrochemical examination. Moreover, the Raman bandsassigned to radical cations and dications in doped PMeT films were found approximately at 1420 and 1400 cm~(-1),respectively. Radical cations and dications coexist on the backbone of PMeT as conductive species and their concentrationsincrease with the increase of doping level. Successive cyclic voltammetry was proved to be an effective approach toimproving the doping level of as-grown thin compact PMeT film.  相似文献   

6.
<正>Nanomechanical properties of multilayer films constructed of polyaniline(PANI) and azobeneze-containing polyelectrolytes(PNACN and PPAPE) were studied by using nanoindentation method.The multilayer films were prepared by the electrostatic layer-by-layer self-assembly through alternately dipping in the polymer solutions.The multilayer films deposited onto the glass slides after proper dry were used for the nanomechanical property testing.The nanomechanical measurement indicated that the PANI/PNACN and PANI/PPAPE multilayers possessed the mean elastic modulus of 5.42 GPa and 4.35 GPa,and hardness of 0.26 GPa and 0.18 GPa,respectively.The nanoscratch properties of the PANI/PNACN and PANI/PPAPE multilayer films were also measured.The critical loads of PANI/PNACN and PANI/PPAPE films were 103.52 mN and 100.59 mN.The degree of electrostatic cross-linking in the multilayers could be altered by exposing the films to aqueous solutions with different pH values.As a result,the modulus and hardness of the multilayer films were changed through the solvent treatment.Both modulus and hardness of the PANI/PNACN films obviously increased after dipping the multilayer films in solutions with pH in a range from 9 to 11.  相似文献   

7.
Nano-structured SiO2 thin films were prepared on the surface of carbon steel for the first time by LPD. The compositions of the films were analyzed by XPS, and the surface morphology of the thin films were observed by AFM. The thin films were constituted by compact particles of SiO2, and there was no Fe in the films. In the process of film forming, the SiO2 colloid particles were deposited or absorbed directly onto the surface of carbon steel substrates that were activated by acid solution containing inhibitor, and corrosion of the substrates was avoided. The nano-structured SiO2 thin films that were prepared had excellent protective efficiency to the carbon.  相似文献   

8.
Thin hybrid films of ZnO/eosin-Y were prepared by electrodeposition at-0.8 and-0.9 V in aqueous and non-aqueous baths at temperatures ranging from 40 to 90 ℃ with dye concentrations of 100 and 400 μmol·L-1.The films were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM),energy-dispersive X-ray analysis (EDX),and absorption spectroscopy.The films prepared in a non-aqueous bath were non-porous and did not adsorb dye molecules on their surface.However,the films grown in aqueous media were porous in nature and adsorbed dye during the deposition of ZnO.Preferential growth of the film along the (002) face was observed,and the highest crystallinity was achieved when the film was deposited at 60 ℃.The maximum absorption was achieved for the films grown at 60 to 70 ℃,a deposition potential of-0.9 V,and a dye concentration of 100 μmol·L-1.  相似文献   

9.
A novel and simple method for preparing tubular structure agglomerates of calcium carbonate (CC-tube) is described. Calcium chloride and sodium carbonate aqueous solutions were used as reactants separated by a collodion film (a nitrocellulose material) in aqueous solution. The effects of the concentrations of calcium chloride and sodium carbonate aqueous solutions on the morphology and phase structure of the as-obtained samples were investigated. The CC-tube growth was prevented with the increase of reactant concentration from 0.5 to 1.0 mol•L-1. Compared with Na2CO3 aqueous solution, it is favourable to grow calcite crystals in CaCl2 aqueous solution. The products were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron- microscopy.  相似文献   

10.
The semi-conductive performances of hot growth film on 316L stainless steel were studied by means of electrochemical impedance spectroscopy(EIS) and Mott-Schottky analysis.The chemical compositions of the hot growth films were detected by X-ray photoelectron spectroscopy(XPS).The results show that the transfer resistance and film resistance increase with increasing temperature to 400℃,then they decrease sharply with further continuously increasing temperature.Formation time plays an important role in determ...  相似文献   

11.
纳米纤维聚苯胺膜在不锈钢电极表面的生长过程   总被引:3,自引:0,他引:3  
研究了脉冲电流法(PGM)聚合苯胺时, 纳米纤维聚苯胺(PANI)膜在不锈钢(SS)电极表面的生长过程. 用计时电位法和扫描电子显微镜(SEM)表征了聚苯胺生长过程的电化学特征和微观形貌; 并通过循环伏安(CV)法研究了苯胺的聚合速率. 结果表明, 聚苯胺的生长经历了两个阶段, 首先是在裸不锈钢电极表面上形成颗粒状聚苯胺, 此时聚合电位约为1.10 V, 经历了30 s后, 电极表面被一层颗粒状聚苯胺膜所覆盖; 在此基础上, 聚苯胺以纳米纤维状结构继续生长, 当颗粒状聚苯胺被纳米纤维状聚苯胺膜完全覆盖时, 聚合电位降至0.75 V左右并保持稳定.  相似文献   

12.
The catalytic behavior of stainless steel (SS) electrode modified by a thin film of polyaniline (PANI) containing platinum particles was studied for electrooxidation of methanol and compared with a platinated Pt/PANI electrode in acidic aqueous solution. Cyclic voltammetry (CV), chronoamperometry, CO stripping techniques were used to investigate electrochemical properties and electrocatalytic activity of SS/PANI/Pt and Pt/PANI/Pt electrodes. The morphology and particle size of Pt catalysts were characterized by Transmission Electron Microscopy (TEM) measurement. The effects of various parameters such as thickness of polymer film, medium temperature and stability of the modified electrodes on methanol oxidation were also investigated. The results indicated that the modified SS electrode exhibited a considerably high electrocatalytic activity on the methanol oxidation as well as the modified Pt electrode.  相似文献   

13.
本文采用脉冲电流法(PGM)在不同的基底材料表面沉积PANI, 通过平均电位\|时间曲线及扫描电子显微镜(SEM)等方法研究了基底材料对PGM法制备PANI的影响; 并采用循环伏安(CV)和电化学阻抗谱(EIS)研究了不同电极材料表面PANI的电化学性能.  相似文献   

14.
采用原位氧化技术调整316L不锈钢(SS316L)基体元素Cr和Ni在界面的浓度和分布,形成了Ni和Cr富集改性界面.应用计时电位技术,通过Cr和Ni改性层催化草酸溶液中的苯胺单体在其表面吸附并聚合,在SS316L表面沉积了附着力良好的聚苯胺(PANI)膜.与SS316L相比,表面富Ni-Cr的SS316L在涂覆PANI膜后,在80℃0.5 mol/L H_2SO_4+5 mg/L F~-溶液中阳极和阴极的腐蚀电位分别提高470和500 m V,维钝电流均下降2~3个数量级;在模拟质子交换膜燃料电池运行环境中,经36000 s恒电位极化,其阳极和阴极的腐蚀电流分别下降约1和2个数量级,腐蚀速度分别约为6~9和5μA/cm~2;在1.4 MPa压力下,聚苯胺膜层与Toray 060碳纸间接触电阻下降约250 mΩ·cm~2.SS316L表面形成富Ni-Cr改性层并涂覆聚苯胺膜后,其耐蚀性和导电性均明显优于原始SS316L,这主要取决于富Ni-Cr改性层的结构、组成和聚苯胺膜的厚度.  相似文献   

15.
Super‐thick diamond‐like carbon (DLC) film is a potential protective coating in corrosive environments. In the present work, three kinds of DLC films whose thickness and modulation periods are 4 µm and 3, 21 µm and 17 and 21 µm and 7, respectively, were fabricated on stainless steel. The effect of different thickness and modulation periods on corrosion and tribocorrosion behaviour of the DLC‐coating stainless steel was investigated in 3.5 wt% NaCl aqueous solution by a ball‐on‐flat tribometer equipped with a three‐electrode electrochemical cell. The DLC‐coating stainless steel served as a working electrode, and its OCP and potentiodynamic polarization were monitored before and during rubbing. The wear–corrosion mechanism of the DLC films was investigated by SEM. The results showed that the increasing thickness can prolong significantly lifetime of DLC films in NaCl aqueous solution. In particular, the modulation period has a significant impact on the tribocorrosion resistance of the DLC super‐thick films. The study suggested that the increasing thickness of compressive stress layer could suppress film damage by reducing crack propagation rate. Thus, the super‐thick DLC film with thickness of 21 µm and 7 periods presented the best tribocorrosion resistance among all studied films. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
抗菌处理含铜铁素体不锈钢的耐微生物腐蚀性能   总被引:1,自引:0,他引:1  
采用电化学测试技术及微生物学方法, 研究了抗菌处理含铜铁素体不锈钢在含有培养基的异养菌溶液中的耐蚀性能. 结果表明, 不锈钢的腐蚀电位随异养菌的新陈代谢呈现规律性变化, 抗菌处理使不锈钢在菌液中钝化膜的稳定性得到改善, 点蚀敏感性降低; 抗菌不锈钢表面弥散分布的ε-Cu析出相的杀菌作用, 降低了异养菌的活性, 减缓了异养菌对抗菌不锈钢的腐蚀, 提高了抗菌不锈钢耐微生物腐蚀性能.  相似文献   

17.
王海燕  谢飞  吴明  任帅 《化学通报》2016,79(4):332-337
采用循环极化、微生物分析法、扫描电镜及表面能谱分析等方法,研究了磁场对316L不锈钢在含硫酸盐还原菌(SRB)的土壤模拟溶液中的腐蚀行为。结果表明,磁场可以抑制SRB的生长;未外加磁场时316L不锈钢表面膜层以局部堆积为主,加有磁场时,局部堆积明显减小,膜层均匀致密的排列于基体表面;无论有或没有外加磁场,316L不锈钢表面均发生钝化膜破裂型点蚀,未外加磁场时的点蚀电位低于加有磁场时的。在相同的浸泡时间,未外加磁场时循环极化滞后环面积明显比加有磁场时的大,说明磁场可以有效抑制316L不锈钢点蚀的形成与发展,降低316L不锈钢的点蚀诱发能力。  相似文献   

18.
Electrochemistry methods were used to investigate the influence of pH on the passive film and corrosion behavior of ultrahigh strength AM355 stainless steel in chloride-containing media. Analysis of the Pourbaix diagram indicates that AM355 stainless steel exhibits higher corrosion resistance in natural and near-natural environments than that in acidic and alkaline conditions. Electrochemistry measurements and composition analysis of the passive film show that pitting potential increased due to the enhanced repassivation capacity of AM355 stainless steel with increasing pH. The mixed MnS/oxide inclusions are the main pitting sensitive locations under all conditions. Morphological observations and energy-dispersive spectroscopy showed that the influence of the gap between the martensitic laths is significant with increasing pH. The inclusions, element concentrations, and microstructures weaken the resistance of ultrahigh-strength martensitic AM355 stainless steel against corrosion.  相似文献   

19.
The effect of thermal annealing of poly(3-octylthiophene) (P3OT) coatings on the corrosion inhibition of stainless steel in an NaCl solution was investigated. P3OT was synthesized by direct oxidation of the 3-octylthiophene monomer with ferric chloride (FeCl3) as oxidant. P3OT films were deposited by drop-casting technique onto 304 stainless steel electrode (304SS). 304SS coated with P3OT films were thermally annealed during 30 h at different temperatures (55°C, 80°C, and 100°C). The corrosion resistance of stainless steel coated with P3OT in 0.5 M NaCl aqueous solution at room temperature was investigated by using potentiodynamic polarization curves, linear polarization resistance, and electrochemical impedance spectroscopy. The results indicated that the thermal treatment at 80°C and 100°C of P3OT films improved the corrosion resistance of the stainless steel in NaCl solution; the speed of corrosion diminished in an order of magnitude with regard to the 304SS. In order to study the temperature effect in the morphology of the coatings before and after the corrosive environment and correlate it with corrosion protection, atomic force microscopy and scanning electron microscopy were used. Morphological study showed that when the films are heated, the grain size increased and a denser surface was obtained, which benefited the barrier properties of the film.  相似文献   

20.
选用结构中同时带有羟基、羧基和氨基的羧甲基壳聚糖为掺杂酸,通过改变掺杂酸与苯胺单体的比例实现了产物从纳米纤维(直径为100nm)到空心微米小球(直径为200nm)的转变.傅立叶红外(FTIR)和紫外可见光谱(UV)表征结果表明,纳米纤维和空心微米小球均为掺杂态聚苯胺.另外,采用电化学交流阻抗技术和动电位极化方法研究了所得聚苯胺在0.5mol/L盐酸溶液中对碳钢的缓蚀作用.结果表明,聚苯胺的加入量为40mg/L时,其对碳钢的缓蚀效率高达91.6%~92.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号