首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
The processing of micro RNAs (miRNAs) from their stemloop precursor have revealed asymmetry in the processing of the mature and its star sequence. Furthermore, the miRNA processing system between organism differ. To assess this at the sequence level we have investigated mature miRNAs in their genomic contexts. We have compared profiles of mature miRNAs within their genomic context of the 5' and 3' stemloop precursor arms and we find asymmetry between mature sequences of the 5' and 3' stemloop precursor arms. The main observation is that vertebrate organisms have a characteristic motif on the 5' arm which is in contrast to the 3' arm motif which mainly show the conserved U at the position of the mature start. Also the vertebrate 5' arm motif show a semi-conserved G 13 nucleotides upstream from the first position. We compared the 5' and 3' arm profiles using the average log likelihood ratio (ALLR) score, as defined by Wang and Stormo (2003) [Wang T., Stormo, G.D., 2003. Combining phylogenetic data with co-regulated genes to identify regulatory motifs. Bioinformatics 2369-2380.] and computing a p-value we find that the two profiles differs significantly in their 3' end where the 5' arm motif (in contrast to the 3' arm motif) has a semi-conserved GU rich region. Similar findings are also obtained for other organisms, such as fly, worm and plants. The observed similarities and differences between closely and distantly related organisms are discussed and related to current knowledge of miRNA processing.  相似文献   

2.
3.
MicroRNAs are important negative regulators of gene expression in higher eukaryotes. The miRNA repertoire of the closest human animal relative, the chimpanzee (Pan troglodytes), is largely unknown. In this study, we focused on computational search of novel miRNA homologs in chimpanzee. We have searched and analyzed the chimp homologs of the human pre-miRNA and mature miRNA sequences. Based on a homology search of the chimpanzee genome with human miRNA precursor sequences as queries, we identified 639 chimp miRNA genes, including 529 novel chimp miRNAs. 91.8% of chimp mature miRNAs and 60.3% of precursors are 100% identical to their human orthologs. The pre-miRNA secondary structures, miRNA families, and clusters are also highly conserved. We also found certain sequence differences in pre-miRNAs and even mature miRNAs that occurred after the divergence of the two species. Some of these differences (especially in mature miRNAs) could have caused species-specific changes in the expression levels of their target genes which in turn could have resulted in phenotypic variation between human and chimp.  相似文献   

4.
In this work, we have developed a sensitive, simple, and enzyme-free assay for detection of microRNAs (miRNAs) by means of a DNA molecular motor consisting of two stem-loop DNAs with identical stems and complementary loop domains. In the presence of miRNA target, it can hybridize with one of the stem-loop DNA to open the stem and to produce a miRNA/DNA hybrid and a single strand (ss) DNA, the ssDNA will in turn hybridize with another stem-loop DNA and finally form a double strand (ds) DNA to release the miRNA. One of the stem-loop DNA is double-labeled by a fluorophore/quencher pair with efficiently quenched fluorescence. The formation of dsDNA can produced specific fluorescence signal for miRNA detection. The released miRNA will continuously initiate the next hybridization of the two stem-loop DNAs to form a cycle-running DNA molecular motor, which results in great fluorescence amplification. With the efficient signal amplification, as low as 1 pmol/L miRNA target can be detected and a wide dynamic range from 1 pmol/L to 2 nmol/L is also obtained. Moreover, by designing different stem-loop DNAs specific to different miRNA targets and labeling them with different fluorophores, multiplexed miRNAs can be simultaneously detected in one-tube reaction with the synchronous fluorescence spectrum (SFS) technique.  相似文献   

5.
Protein motifs, which are specific regions and conserved regions, are found by comparing multiple protein sequences. These conserved regions in general play an important role in protein functions and protein folds, for example, for their binding properties or enzymatic activities. The aim here is to find the existence correlations of protein motifs. The knowledge of protein motif/domain sharing should be important in shedding new light on the biologic functions of proteins and offering a basis in analyzing the evolution in the human genome or other genomes. The protein sequences used here are obtained from the PIR-NREF database and the protein motifs are retrieved from the PROSITE database. We apply data mining approach to discover the occurrence correlations of motif in protein sequences. The correlation of motifs mined can be used in evolution analyses and protein structure prediction. We discuss the latter, i.e., protein structure prediction in this study. The correlations mined are stored and maintained in a database system. The database is now available at http://bioinfo.csie.ncu.edu.tw/ProMotif/.  相似文献   

6.
HBV-encoded microRNA candidate and its target   总被引:2,自引:0,他引:2  
  相似文献   

7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号