首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The alkaline hydrolysis of aromatic and normal aliphatic acid esters has been studied at 25°C in micellar solutions of surfactants (DTAB, TTAB, CTAB, SDS, Brij 35 and Triton X—100) with UV spectrophotometry and the method of thermokinetics in this paper. The rate constants of the alkaline hydrolysis of esters in micellar pseudophase, k1m and K2m have been calculated, respectively. The ratios of k2m to k2w or k1w to k1w indicate that the alkaline hydrolysis of esters arc inhibited by all of the surfactants investigated. It was supposed that such inhibition is mostly in relation to the micropolarity of micellar surface. The critical micellar concentrations of the corresponding systems have also been measured with the conductivity method and UV spectrophometry in this paper.  相似文献   

2.
The polymerization of acrylamide in mixed micellar solutions of surfactants, initiated by NaHSO3 has been studied at 20 and 3Q° C with time variable method of thermokinetics for 1. 5-order reaction. The results indicate that the mixed micellar systems of cationic or anionic with zwitterionic surfactants (SLS/ CTAB, SLS/ TTAB, SLS/ SDS) and cationic with nonionic surfactants (Brij 357sol; CTAB, Bri-J35/TTAB, Brij35/ DTAB) have catalytic effect on the polymerization in the order, at 20° C. SLS/ SDS SLS/ TTAB SLS/ CTAB Brij35/ CTAB at 30° C SLS/ SDS SLS/ TTAB≈ / CTAB Bri-j35/ DTAB= sBrij35/ TTAB as Brij35/ CTAB, while Brij35/ SDS mixed micellar system has inhibition. These effects are attributed to the effect of the Stern layer of mixed micelles on the step of initiator (HSOT) to form free radical.  相似文献   

3.
Dissociation equilibria of 4‐(2‐pyridylazo) resorcinol (PAR) in aqueous micellar solutions were determined spectrophotometrically at 25 °C and at the constant ionic strength I = 0.1 M KNO3. For this purpose, the effect of nonionic (Brij‐35, Triton X‐100, Triton X‐114, Triton X‐405), and anionic (SDS) surfactants on the absorption spectra of PAR at different pH values was studied. Results show that the pKa values and pure spectra of each species of PAR are influenced by percentages of a neutral and an anionic surfactant such as Brij‐35, Triton X‐100, Triton X‐114, Triton X‐405 and SDS, respectively, added to the solution of this reagent.  相似文献   

4.
The solubilities of two nonsteroidal anti-inflammatory (MELOXICAM and CELECOXIB) drugs, were determined in aqueous solutions of nonionic (Tween 20, Tween 80, Brij 30, Brij 35, Triton X 100, Triton X 114) surfactants. These surfactants have different numbers of oxyethylene units and their micelles showed different aggregation numbers. It is shown that these surfactants have different abilities to solubilize NSAIDs drugs. The solubilities of the drugs increased linearly with the increase in concentration of surfactants. The sizes of micelles remained constant with the addition of the drugs, except for Triton type surfactants in which case the size of the micelles decreased. It was observed that the number of oxyethylene units in the surfactants, aggregation number of the micelles and HLB play key roles in solubilizing the drugs.  相似文献   

5.
The alkaline hydrolysis of dimethylformamide has been studied at 40'C in micellar solutions of single surfactant (CTAB. SDS. Brij 35) with the analog thermoanalytical curve method of thermokinetics. A kinetic equation of micellar catalysis under the condition of highter reactant concentration than micellar concentration ([S]>[M]) has been derived from the pseudophase model of micellar catalysis and some relative assumptions, The kinetic parameters. km, k2mand the association constant of reactant with micelle K1, have been calculated in this way. the results indicate that these surfactant micelles exhibit catalytic effect on the reaction. This is attributed to the micropolarity and local concentration effect of micelles.  相似文献   

6.
Micellar-enhanced ultrafiltration (MEUF) was used to remove cadmium ions from wastewater efficiently. In this study the nonionic surfactants polyoxyethyleneglycol dodecyl ether (Brij35) and polyoxyethylene octyl phenyl ether (TritonX-100) were for micellar-enhanced ultrafiltration to lower the dosage of the anionic surfactant sodium dodecyl sulfate (SDS). The surfactant critical micelle concentration (CMC) and the degree of micelle counterion binding were investigated. The effects of nonionic surfactant addition on the efficiency of cadmium removal, the residual quantities of surfactant, the permeate flux and the secondary membrane resistance were investigated. A comparison between MEUF with SDS and MEUF with mixed anionic–nonionic surfactants was undertaken. The results show that the addition of Brij35 or TritonX-100 reduced the CMC of SDS and the degree of counterion binding for the micelles. Due to these variations the Cd2+ rejection efficiency was at a maximum when the Brij35:SDS and the TritonX-100:SDS molar ratio was 0.5. The Cd2+ rejection efficiency in MEUF with SDS is higher than for MEUF with mixed surfactants when the total dose of surfactant is constant. The permeate flux of MEUF with SDS is higher than that for MEUF with mixed surfactants while the secondary resistance of MEUF with SDS is less than that of MEUF with mixed surfactants.  相似文献   

7.
α‐Chymotrypsin (α‐CT) activity was measured in aqueous buffer with the following alkyltriphenylphosphonium bromide surfactants in the series cetyl, tetradecyl, and dodecyl as a tail length. For the sake of comparison with mixed micellar investigation on activity of α‐CT, cationic cetyltriphenylphosphonium bromide (CTPB) and nonionic surfactant Triton X‐100, Brij‐56, Brij‐35, Tween 20, and Igepal Co‐210 have been used. The p‐nitrophenyl acetate (PNPA) hydrolysis rate was determined at the surfactant concentration of both cationic and mixed micellar systems by a UV–vis spectrophotometer. The catalytic reaction follows the Michaelis–Menten mechanism, and the catalytic efficiency (kcat/KM) was evaluated for both homogeneous and mixed‐micellar media. The maximum catalytic efficiency was observed at 5 mM concentration of CTPB, but the highest catalytic efficiency, 572 M?1 s?1, was measured in the presence of mixed micellar (7.5 mM CTPB + 2.5 mM Tween‐20). The fluorescence (FL) spectra showed the differences of α‐CT conformations in the presence of cationic surfactants. The FL results suggest that the influence of cationic surfactant on proteolysis arises from the interaction with the α‐CT. The binding constant, ksv, of α‐CT with cationic aggregates was determined in the buffer using the Stern–Volmer equation by the fluorescence spectroscopic approach.  相似文献   

8.
The effect of micelles of different surfactants (cationic, anionic, and neutral) on the kinetics of the glucose oxidase-catalyzed reduction of ferrocenium cations RFc+ (R=H, Bun) byd-glucose was studied by spectrophotometry. In micellar media of Triton X-100 and sodium dodecyl sulfate (SDS), the Michaelis dependence of the reaction rate on the HFc+ concentration is observed, while this dependence has an extreme character in cationic micelles of cetyltrimethylammonium bromide (CTAB). The nature and concentration of surfactants of all types have a slight effect on the rate of reduction of HFc+. The level of enzymatic activity is approximately equal in the case of Triton X-100 and CTAB and is considerably lower in the SDS micelles. On going from HFc+ to BunFc+, the reaction rate is maximum in the cationic CTAB micelles, the anionic SDS micelles exhibit almost no activity, and the activity has an intermediate value in neutral micelles of Triton X-100. The conditions are presented under which the micellar medium controls the catalytic activity of glucose oxidase with respect to ferrocenium cations. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1795–1801, October, 1997.  相似文献   

9.
(1)H NMR chemical shift, spin-lattice relaxation time, spin-spin relaxation time, self-diffusion coefficient, and two-dimensional nuclear Overhauser enhancement (2D NOESY) measurements have been used to study the nonionic-ionic surfactant mixed micelles. Cetyl trimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) were used as the ionic surfactants and polyethylene glycol (23) lauryl ether (Brij-35) as the nonionic surfactant. The two systems are both with varying molar ratios of CTAB/Brij-35 (C/B) and SDS/Brij-35 (S/B) ranging from 0.5 to 2, respectively, at a constant concentration of 6 mM for Brij-35 in aqueous solutions. Results give information about the relative arrangement of the surfactant molecules in the mixed micelles. In the former system, the trimethyl groups attached to the polar heads of the CTAB molecules are located between the first oxy-ethylene groups next to the hydrophobic chains of Brij-35 molecules. These oxy-ethylene groups gradually move outward from the hydrophobic core of the mixed micelle with an increase in C/B in the mixed solution. In contrast to the case of the CTAB/Triton X-100 system, the long flexible hydrophilic poly oxy-ethylene chains, which are in the exterior part of the mixed micelles, remain coiled, but looser, surrounding the hydrophobic core. There is almost no variation in conformation of the hydrophilic chains of Brij-35 molecules in the mixed micelles of the SDS/Brij-35 system as the S/B increases. The hydrophobic chains of both CTAB and SDS are co-aggregated with Brij-35, respectively, in their mixed micellar cores.  相似文献   

10.
Cyclic voltammetry (CV) and viscosity measurements have been employed to study the aggregation behavior of mixed micellar systems of anionic surfactant (dioctyl sulfosuccinate sodium salt, AOT) with conventional nonionic surfactants such as Brij 35/TritonX-100/Tween 20/Tween 80/Myrj 45 and two triblock copolymers (L64 and F68). Critical micelle concentration (cmc) values have been determined for various micellar systems from CV measurements using 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) as an electroactive probe at 25 °C. Diffusion coefficient (D) has been evaluated from Randles–Sevcik equation which showed an overall decrease for most of the binary systems. The negative values of interaction parameters (β) obtained from regular solution theory suggest the synergistic behavior in all the binary systems except AOT + Tween 80 mixtures. The mixed systems of AOT with triblock copolymers showed stronger synergistic interactions than that of mixed systems of AOT with nonionic surfactants. A comparative evaluation of mixed systems of anionic surfactants AOT and sodium dodecyl sulfate with Myrj 45 and AOT + L64 and F68 has been made on the basis of different micellar parameters and structural properties of surfactants. Viscosity measurements also show similar type of interactions in the mixed micelles.  相似文献   

11.
The apparent dissociation constants of 1-propanoic, 1-butanoic, 1-pentanoic and 1-hexanoic acids were obtained for the first time in Brij 35 micellar solutions with concentration from 0.03 to 0.20 mol⋅L−1 and sodium dodecyl sulfate (SDS) micellar solutions with concentrations from 0.01 to 0.30 mol⋅L−1. A pronounced effect of Brij 35 micelles on the acid-base properties of aliphatic acids was observed. The binding constants, K b, of carboxylic acids to micellar pseudophases of SDS and Brij 35 were estimated within the framework of the pseudophase model. The dependences of Gibbs energies of transfer from water to the micellar pseudophases were constructed, and Gibbs energies were evaluated for methylene and carboxylic group transfers into Brij 35 and SDS micelles. Comparison of the Gibbs energies of methylene group transfer from water to Brij 35 and SDS suggests that the mechanisms of hydrocarbon group transfer into the core of nonionic and anionic micelles involving the same monomer hydrophobic tail length are similar.  相似文献   

12.
Abstract Micelles formed by sodium taurocholate (NaTC) and mixed micelles formed by NaTC with detergents (SDS, reduced Triton X-100 and CTAC) were studied with fluorescent probes. Pyrene was used as an indicator of the polarity of the micellar binding site by comparison of the fluorescence spectra and vibronic band intensity ratios of pyrene in the different systems. Perylene was used as a fluorescence polarization probe to study the rigidity of the NaTC and mixed micelles. The fluorescence lifetime of perylene in the different systems was also measured. Results of the studies were compared with measurements of the probes in cyclohexane, ethanol and aqueous beta-cyclodextrin. Perylene was found to be more rigidly bound in the NaTC micelles than in the detergent micelles. Insertion of small amounts of reduced Triton X-100 into the NaTC micelles appears to increase the rigidity. The binding sites of NaTC and CTAC have similar polarities, and are more polar than those of SDS and reduced Triton X-100. Insertion of any of the detergents into the NaTC micelle decreases the polarity of the binding site, possibly by reducing the penetration of water into the micelle.  相似文献   

13.
Summary Two modes of capillary electrophoresis (CE), capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC), were investigated for the separation of 12 aromatic sulphonate compounds. In CZE, although the voltage applied, the buffer concentration and the pH were optimized for effective separation of the compounds studied, under the best conditions four of the five amino compounds coeluted, as did naphthalene-1-sulphonic acid and naphthalene-2-sulphonic acid. In MEKC, sodium dodecyl sulphate (SDS) and Brij 35 were chosen as the anionic and nonionic surfactants and the effect of the concentration of micelles was examined. The effect of adding methanol as the organic modifier was also investigated with each of these micellar systems. All the analytes, including the isomers, were completely separated by use of MEKC with Brij 35 but when SDS was used only 11 compounds were separated because two amino compounds coeluted.  相似文献   

14.
The polymerization of acrylamide in micellar solutions of cationic, anionic, zwitterionic and nonionic surfactants, initiated by NaHSO3, has been studied at 20 and 30° C with time variable method of thermokinetics for the 1. 5-order reaction in this paper. Reaction mechanism has been suggested and rate equations have been derived. The results indicate that ionic (CTAB, TTABDTAB, SDS) and zwitterionic (SLS) surfactants catalyze the polymerization in the order SDS>SLS>DTAB ≈ TTA≈ CTAB, and nonionic surfactant (Brij35) has slight inhibition effect. These effects are mainly caused by the effect of the formation of micelle- HSO3 complex on the step of initiator to form free radical.  相似文献   

15.
Micelles of different surfactants are well known to affect chemical equilibria and reactivities by selectively sequestering the reagent substrates through electrostatic and hydrophobic interactions. In this article, the effects of micelles of various surfactants on different parameters of the Ce(IV)‐catalyzed Belousov–Zhabotinsky (BZ) oscillatory reaction at 35°C in nonstirred closed conditions are studied by employing spectrophotometry and tensiometry. Surfactants used in this study are the cationics hexadecyltrimethylammonium bromide (CTAB) and pentamethylene‐1,5‐bis(N‐hexadecyl‐N,N‐dimethylammonium)bromide gemini (Gemini), anionic sodium dodecylbenzene sulfonate (SDBS), and nonionic Brij58, whereas the binary surfactant systems used are cationic–nonionic CTAB+Brij58 and anionic–nonionic SDBS+Brij58. The results revealed that the induction period shows a definite variation with increasing concentration of different surfactants above their critical micelle concentration (cmc). The amplitudes of oscillation and absorbance maxima and minima are enhanced in the presence of micelles of CTAB and Gemini surfactants, whereas micelles of SDBS and Brij58 have almost no effect on the nature of the oscillations. However, mixed micelles of CTAB+Brij58 and SDBS+Brij58 binary mixtures show a quite different effect on the overall behavior of the oscillations. The enhanced effect of CTAB and Gemini surfactants on the overall nature of oscillations has been attributed to the positive charge on the surface of their micelles and to some extent on the presence of nitrogen in their head group. The effect of mixed binary micelles may be attributed to their synergistic nature. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 659–668, 2010  相似文献   

16.
A nitroxide prefluorescent probe has been used to evaluate local reactivity of antioxidants in micellar systems. An apparent rate constant that directly reflects the relevance of antioxidant hydrophobicity on the reaction toward nitroxide radicals has been defined. Dramatic increases in this parameter for quercetin are shown on moving from methanol to micellar media: 90 and 230 fold enhancements for SDS and Triton X100 micelles, respectively. This is a clear consequence of the favorable partition of reactants in the micelles.  相似文献   

17.
Micellar-enhanced ultrafiltration (MEUF), a surfactant-based separation process, is promising in removing multivalent metal ions from aqueous solutions. The micellar-enhanced ultrafiltration of cadmium from aqueous solution was studied in systems of anionic surfactant and mixed anionic/nonionic surfactants. The micelle sizes and zeta potentials were investigated by dynamic light scattering measurements. The effects of feed surfactant concentration, cadmium concentration and the molar ratio of nonionic surfactants to sodium dodecyl sulfate (SDS) on the cadmium removal efficiency, the rejection of SDS and nonionic surfactants and the permeate flux were investigated. The rejection efficiencies of cadmium in the MEUF operation were enhanced with higher SDS concentration and moderate Cd concentration. When SDS concentration was fixed at 3 mM, the optimal ranges of the molar ratios of nonionic surfactants to SDS for the removal of cadmium were 0.4–0.7 for Brij 35 and 0.5–0.7 for Triton X-100, respectively. With the addition of nonionic surfactants, the SDS dosage and the SDS concentration in the permeate were reduced efficiently.  相似文献   

18.
应用动力学方法研究了二苯甲酮/三乙胺引发MMA在胶束水溶液中的光敏聚合反应,结果表明表面活性剂的胶束对聚合反应具有催化作用,以离子型胶束的效果显著,可使反应的量子收率提高4—5倍。聚合速度和产物分子量随胶速浓度而增加,用紫外光谱和~1H—NMR测定了BP/TEA/MMA在离子型胶束中增溶位置,结果表明反应发生在胶束-水界面层。由于增溶于离子胶束中的单体分子具有一定取向性,提高了PMMA的立构有序性。  相似文献   

19.
The reaction methyl 4‐nitrobenzenesulfonate + Cl? was studied in hexadecyltrimethylammonium chloride (CTAC) in the absence and presence of 0.1 M NaCl, as well as in mixed CTAC/Triton X‐100 (polyoxyethylene(9.5)octylphenyl ether) aqueous micellar solutions with CTAC molar fractions of 0.9, 0.8, 0.7, and 0.6. Conductivity measurements were used to obtain critical micellar concentrations and micellar ionization degrees of the various micellar reaction media. From these data, thermodynamic information on the cationic/nonionic mixed micellar solutions was obtained. Micellar effects on the observed rate constant were explained by pseudophase kinetic models. The estimated second‐order rate constants in the micellar pseudophase of the different micellar reaction media showed that pure CTAC and mixed CTAC/Triton X‐100 micelles, at the high cationic surfactant molar fractions studied, provide reaction sites of similar characteristics at the interfacial region. This was in agreement with previous structural studies carried out on mixed CTAC/Triton X‐100 micellar solutions. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 35: 45–51, 2003  相似文献   

20.
The mixed micellar liquid chromatography is a mode that uses mixed micellar system of Brij35/SDS (85 : 15) as a mobile phase under adequate experimental conditions, can simulate the resting membrane potential and the conformation of the long hydrophilic polyoxyethylene chains remains unchanged. In this article, the applications of biopartitioning micellar chromatography, using mixed micellar system to describe and estimate bioactivities of alkaloids, has been focused. The BMCBrij35/SDS‐QRAR models of half‐life time, volume of distribution, plasma clearance and area under concentration–time curve were obtained using Brij35‐SDS retention data. The aim is to take a look at the capability of the mixed micellar liquid chromatography model to describe and/or estimate the bioactivity of alkaloids. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号