首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrocolloids are water-soluble biopolymers consisting of high molecular weight polysaccharides. For generations, these biopolymers were also termed gums or stabilizers imparting viscosity, gelification and long-term stability to food systems.

Some hydrocolloids were also considered as emulsifying agents, since they help to form and stabilize oil-in-water emulsions. Only in the last two decades questions have been raised as to the mode of their action in low viscosity and low concentrations dispersed systems consisting of oil and water.

Gum Arabic is the only gum in use in dilute emulsion systems which was proved to be a good emulsifier - adsorbing onto oil-water interfaces and imparting steric stabilization.

However, other gums have been known to reduce surface and interfacial tensions, to adsorb onto solid surfaces and to improve stability of oil-in-water emulsions. Only recently attention has been paid to the structure-surface activity relationship between the gums and their emulsification abilities. Galactomannans, xanthans, pectins, etc. are being considered as emulsifying agents, and correlation between their internal composition and activity are being studied.

This review will discuss the drawbacks and prospects of hydrocolloids as food emulsifying agents, as native hydrocolloids and as modified (chemically, enzymatically) macrobiopolymeric amphiphiles.  相似文献   

2.
Although most components contribute to structural and physical properties of food, the two main construction materials are proteins and polysaccharides in their molecular and colloidal dispersions. Native biopolymers in biological system interact specifically, whereas they are mainly denatured and interact non-specifically in formulated food. Most food components have limited miscibility on a molecular level and form multicomponent, heterophase and non-equilibrium dispersed systems. A thermodynamic approach is applicable for studying structure-property relationships in formulated foods since their structures are based on non-specific interactions between components. Thermodynamically-based operations, such as mixing of components, changing temperature and/or pH, underlie processing conditions. To simplify considerations, attention will focus only on the effects of thermodynamic incompatibility of biopolymers on food dispersion functionality. The excluded volume effect of the macromolecules is the main reason for their immiscibility. Molecular mimicry of globular proteins causes their more-than-ten-fold-higher miscibility compared to classical polymers. Biopolymer incompatibility results in phase-separated liquid and gel-like aqueous systems. In highly volume-occupied systems aggregation, crystallisation and gelation of biopolymers and their adsorption at oil/water interfaces favour an increase in the free volume, accessible for macromolecules. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Proteins and polysaccharides are key elements in formulated foods, cosmetics, and pharmaceuticals. Their interaction behavior mainly determines the organoleptic, optical, textural, and rheological properties of foods. Traditionally, animal-based biopolymers have been widely used because of their excellent techno-functionality; however, plant-based alternatives gained enormous interest among scientists and manufacturers because of sustainable, religious, ethical, and nutritional reasons. The directed complexation of mixed biopolymers entirely originated from plants might be used to stabilize food colloids, modulate interfacial and bulk properties, control the release of bioactives, and mask bitter components. As such, this review highlights the general separation mechanism of mixed biopolymers systems entirely composed of plant-based biopolymers to be used as functional food ingredients. Particularly, ‘traditional’ and ‘novel’ proteins and polysaccharides obtained from different plant sources (e.g. soy, wheat, pea, potato, apple, citrus) are introduced to be assembled to modulate interfacial and bulk properties of food colloids.  相似文献   

4.
A binary mixture of starch-starch or starch with other biopolymers such as protein and non-starch polysaccharides could provide a new approach in producing starch-based food products. In the context of food processing, a specific adjustment in the rheological properties plays an important role in regulating production processing and optimizing the applicability, stability, and sensory of the final food products. This review examines various biopolymer mixtures based on starch and the influence of their interaction on physicochemical and rheological properties of the starch-based foods. It is evident that the physicochemical and rheological characteristics of the biopolymers mixture are highly dependent on the type of starch and other biopolymers that make them up mixing ratios, mixing procedure and presence of other food ingredients in the mixture. Understanding these properties will lead to improve the formulation of starch-based foods and minimize the need to resort to chemically modified starch.  相似文献   

5.
Tailor-made microparticles and nanoparticles are finding increasing use in food products to alter their nutritional characteristics, flavor profile, appearance, rheology, stability, and processability. These particles are often fabricated from food-grade biopolymers, such as proteins and polysaccharides. Food biopolymers display a diverse range of molecular and physicochemical properties (e.g. molecular weight, charge, branching, flexibility, polarity, and solubility) which enables the assembly of colloidal particles that exhibit a broad range of functional attributes. By careful selection of appropriate biopolymers and assembly methods, biopolymer particles can be fabricated with tailored behaviors or features. In this article, we review recent developments in the design and fabrication of functional biopolymer nanoparticles and microparticles, and highlight some of the challenges that will be the focus of future research.  相似文献   

6.
This review presents recent research conducted on the development of various protein-polysaccharide conjugates, their functional properties and industrial applications. These conjugates are formed by the glycosylation of food proteins with carbohydrates via the Maillard reaction and are capable of improving the functional properties of proteins. The Maillard reaction facilitates covalent bonding between a reducing group of a carbohydrate and an amino group of a protein under controlled conditions of temperature, time, pH, and relative humidity. There is a great deal of interest in modifying the functional properties of proteins and in the use of novel conjugates for various industrial applications. This review discusses various methods and their implications for preparing and characterising these conjugates. Furthermore, the physicochemical properties of conjugates such as solubility, thermal stability, emulsifying activity, emulsion stabilising properties, gelling and foaming properties are also analysed. A novel processing technology, a spinning disc reactor, could be an alternative process for the production of protein–polysaccharide conjugates, with desirable functionality in different food systems.  相似文献   

7.
Confocal scanning laser microscopy (CSLM) has been used to study the behaviour of mixtures of proteins, gelatine, whey proteins and β-lactoglobulin, and polysaccharides, dextran, gellan gum, carrageenan, gum Arabic, and starch. CSLM proved to be a suitable technique to visualise the microstructure of these (phase separated) mixtures in two and three-dimensional images. Contrast through fluorescence is obtained either by covalent labelling (polysaccharides and proteins) or non-covalent labelling (proteins and starch). Double and triple labelling allows the visualisation of individual components in a complex mixture of biopolymers.  相似文献   

8.
The mechanism and kinetics of the electrostatic gelation of native beta-lactoglobulin-xanthan gum mixtures in aqueous solution is reported. The total biopolymer concentration at which gelation was obtained was extremely low (0.1 wt %) compared to the usually tested concentrations for protein-polysaccharide mixed gels (4-12 wt %). This is, to our knowledge, the first time that oppositely charged proteins and polysaccharides are reported to form a gel without applying any treatment to denature the protein (e.g. heating, enzymatic hydrolysis) and at such low concentrations. Static light-scattering and viscoelastic measurements allowed determination of the gelation kinetics. It was found that the gelation process initiated following a similar path as that of an associative phase separation process, i.e., with the formation of primary and interpolymeric electrostatic complexes. However, interpolymeric complexes were able to form clusters and junction zones that resulted in the freeze-in of the whole structure at the point of gelation. The formed gel is therefore a coupled-gel, that is, a gel that has junction zones involving two different molecules. The structuration of xanthan gum, even at these low concentrations, may have played a role in the structuration process. Due to the electrostatic nature of the gels, there was an optimum pH and macromolecular ratio at which the stability of the gels was maximal. This was related to the existence of a stoichiometric electrical charge equivalence pH, where molecules carry equal but opposite charges and protein-polysaccharide interactions are at their maximum.  相似文献   

9.
Pulsed electric fields (PEFs), which are generated by pulsed power technologies, are being tested for their applicability in food processing through protein conformational change and the poration of cell membranes. In this article, enzyme activity change and the permeabilization of agricultural products using pulsed power technologies are reviewed as novel, nonthermal food processes. Compact pulsed power systems have been developed with repetitive operation and moderate output power for application in food processing. Firstly, the compact pulsed power systems for the enzyme activity change and permeabilization are outlined. Exposure to electric fields affects hydrogen bonds in the secondary and tertiary structures of proteins; as a result, the protein conformation is induced to be changed. The conformational change induces an activity change in enzymes such as α-amylase and peroxidase. Secondly, the conformational change in proteins and the induced protein functional change are reviewed. The permeabilization of agricultural products is caused through the poration of cell membranes by applying PEFs produced by pulsed discharges. The permeabilization of cell membranes can be used for the extraction of nutrients and health-promoting agents such as polyphenols and vitamins. The electrical poration can also be used as a pre-treatment for food drying and blanching processes. Finally, the permeabilization of cell membranes and its applications in food processing are reviewed.  相似文献   

10.
Milk whey proteins (MWP) and pectins (Ps) are biopolymer ingredients commonly used in the manufacture of colloidal food products. Therefore, knowledge of the interfacial characteristics of these biopolymers and their mixtures is very important for the design of food dispersion formulations (foams and/or emulsions). In this paper, we examine the adsorption and surface dilatational behaviour of MWP/Ps systems under conditions in which biopolymers can saturate the air-water interface on their own. Experiments were performed at constant temperature (20 °C), pH 7 and ionic strength 0.05 M. Two MWP samples, β-lactoglobulin (β-LG) and whey protein concentrate (WPC), and two Ps samples, low-methoxyl pectin (LMP) and high-methoxyl pectin (HMP) were evaluated. The contribution of biopolymers (MWP and Ps) to the interfacial properties of mixed systems was evaluated on the basis of their individual surface molecular characteristics. Biopolymer bulk concentration capable of saturating the air-water interface was estimated from surface pressure isotherms. Under conditions of interfacial saturation, dynamic adsorption behaviour (surface pressure and dilatational rheological characteristics) of MWP/Ps systems was discussed from a kinetic point of view, in terms of molecular diffusion, penetration and configurational rearrangement at the air-water interface. The main adsorption mechanism in MWP/LMP mixtures might be the MWP interfacial segregation due to the thermodynamic incompatibility between MWP and LMP (synergistic mechanism); while the interfacial adsorption in MWP/HMP mixtures could be characterized by a competitive mechanism between MWP and HMP at the air-water interface (antagonistic mechanism). The magnitude of these phenomena could be closely related to differences in molecular composition and/or aggregation state of MWP (β-LG and WPC).  相似文献   

11.
The equilibrium phase behavior of a binary mixture of charged colloids and neutral, nonadsorbing polymers is studied within free-volume theory. A model mixture of charged hard-sphere macroions and ideal, coarse-grained, effective-sphere polymers is mapped first onto a binary hard-sphere mixture with nonadditive diameters and then onto an effective Asakura-Oosawa model [S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954)]. The effective model is defined by a single dimensionless parameter-the ratio of the polymer diameter to the effective colloid diameter. For high salt-to-counterion concentration ratios, a free-volume approximation for the free energy is used to compute the fluid phase diagram, which describes demixing into colloid-rich (liquid) and colloid-poor (vapor) phases. Increasing the range of electrostatic interactions shifts the demixing binodal toward higher polymer concentration, stabilizing the mixture. The enhanced stability is attributed to a weakening of polymer depletion-induced attraction between electrostatically repelling macroions. Comparison with predictions of density-functional theory reveals a corresponding increase in the liquid-vapor interfacial tension. The predicted trends in phase stability are consistent with observed behavior of protein-polysaccharide mixtures in food colloids.  相似文献   

12.
Ultrasonically synthesized core-shell microcapsules can be made of synthetic polymers or natural biopolymers, such as proteins and polysaccharides, and have found applications in food, drug delivery and cosmetics. This study reports on the ultrasonic synthesis of microcapsules using unmodified (natural) and biodegradable glycogen nanoparticles derived from various sources, such as rabbit and bovine liver, oyster and sweet corn, for the encapsulation of soybean oil and vitamin D. Depending on their source, glycogen nanoparticles exhibited differences in size and ‘bound’ proteins. We optimized various synthetic parameters, such as ultrasonic power, time and concentration of glycogens and the oil phase to obtain stable core-shell microcapsules. Particularly, under ultrasound-induced emulsification conditions (sonication time 45 s and sonication power 160 W), native glycogens formed microcapsules with diameter between 0.3 μm and 8 μm. It was found that the size of glycogen as well as the protein component play an important role in stabilizing the Pickering emulsion and the microcapsules shell. This study highlights that native glycogen nanoparticles without any further tedious chemical modification steps can be successfully used for the encapsulation of nutrients.  相似文献   

13.
Different emulsions based on two protein mixtures (skim milk powder (SMP) and functional dairy proteins (FDP)), two mono-di-glyceride mixtures (MDG) (saturated and partially unsaturated), three fats (hydrogenated and refined coconut oils and refined palm oil) were studied to investigate the interactions occurring between the oil phase, low molecular weight emulsifiers and proteins. Immediately following the emulsification process, high diameters of fat globules were obtained in FDP-based systems, relevant of an aggregation phenomenon. At this stage, the fat globule size characteristics were dependent on the emulsifier and fat types present in the formulation. In contrast, SMP-based emulsions were characterized by low proportions of aggregated particles regardless the formulations. Ageing (24 h at 4 °C) promoted disaggregation in FDP formulations, while SMP emulsions were well stabilized. Just after the homogenization step, less proteins were required to stabilize the globule interface in FDP systems as compared to SMP ones. Only with SMP, the amount of protein load at the fat globule surface was influenced by the oil nature and/or by the emulsifier type. A competitive adsorption of caseins, over whey proteins, was demonstrated in the case of FDP. The ageing period promoted a displacement of the proteins adsorbed at the oil droplet interface, suggesting a disruption of the interfacial protein interactions. This disruption was more marked with SMP than with FDP and, in both cases, was more or less influenced by the emulsifier and oil phase natures. The variations of the viscosity and rheological parameters (elastic and viscous moduli) were not dependent on one specific component of the formulation.  相似文献   

14.
Organic impurities in the fermentation broth of antibiotic production impose great difficulties in the crystallization and recovery of antibiotics from the concentrated waste liquor. In the present laboratory study, the inhibitory effect of biopolymers on antibiotic crystallization was investigated using oxytetracycline (OTC) as the model antibiotic. Organic impurities separated from actual OTC fermentation waste liquor by ultrafiltration were dosed into a pure OTC solution at various concentrations. The results demonstrated that small organic molecules with an apparent molecular weight (AMW) of below 10,000 Da did not affect OTC crystallization significantly. However, large biopolymers, especially polysaccharides, in the fermentation waste caused severe retardation of crystal growth and considerable deterioration in the purity of the OTC crystallized. Atomic force microscopy (AFM) revealed that OTC nuclei formed in the solution attached to the surfaces of large organic molecules, probably polysaccharides, instead of being surrounded by proteins as previously thought. It is proposed that the attachment of OTC nuclei to biopolymers would prevent OTC from rapid crystallization, resulting in a high OTC residue in the aqueous phase. In addition, the adsorption of OTC clusters onto biopolymers would destabilize the colloidal system of organic macromolecules and promote particle flocculation. OTC crystallization would therefore take place with the precipitation of abundant organic impurities. Hence, the removal of polysaccharides and other biopolymers by ultrafiltration can be an effective means of improving the recovery of OTC and similar antibiotics by crystallization from the fermentation waste.  相似文献   

15.
There is a need for edible delivery systems to encapsulate, protect and release bioactive and functional lipophilic constituents within the food and pharmaceutical industries. These delivery systems could be used for a number of purposes: controlling lipid bioavailability; targeting the delivery of bioactive components within the gastrointestinal tract; and designing food matrices that delay lipid digestion and induce satiety. Emulsion technology is particularly suited for the design and fabrication of delivery systems for lipids. In this article we provide an overview of a number of emulsion-based technologies that can be used as edible delivery systems by the food and other industries, including conventional emulsions, nanoemulsions, multilayer emulsions, solid lipid particles, and filled hydrogel particles. Each of these delivery systems can be produced from food-grade (GRAS) ingredients (e.g., lipids, proteins, polysaccharides, surfactants, and minerals) using relatively simple processing operations (e.g., mixing, homogenizing, and thermal processing). The structure, preparation, and utilization of each type of delivery system for controlling lipid digestion are discussed. This knowledge can be used to select the most appropriate emulsion-based delivery system for specific applications, such as encapsulation, controlled digestion, and targeted release.  相似文献   

16.
The Derivatograph has been found to be suitable for the investigation of biopolymers. consisting of polysaccharides and proteins. It could be demonstrated that interactions between the macromolecules of the collagen-proteoglycan-glycoprotein complexes significantly influence the thermal stability of the individual components.  相似文献   

17.
Both proteins and polysaccharides are biopolymers present on a bacterial surface that can simultaneously affect bacterial adhesion. To better understand how the combined presence of proteins and polysaccharides might influence bacterial attachment, adhesion forces were examined using atomic force microscopy (AFM) between colloids (COOH- or protein-coated) and polymer-coated surfaces (BSA, lysozyme, dextran, BSA+dextran and lysozyme+dextran) as a function of residence time and ionic strength. Protein and dextran were competitively covalently bonded onto glass surfaces, forming a coating that was 22-33% protein and 68-77% dextran. Topographic and phase images of polymer-coated surfaces obtained with tapping mode AFM indicated that proteins at short residence times (<1 s) were shielded by dextran. Adhesion forces measured between colloid and polymer-coated surfaces at short residence times increased in the order protein+dextran < or = protein < dextran. However, the adhesion forces for protein+dextran-coated surface substantially increased with longer residence times, producing the largest adhesion forces between polymer coated surfaces and the colloid over the longest residence times (50-100 s). It was speculated that with longer interaction times the proteins extended out from beneath the dextran and interacted with the colloid, leading to a molecular rearrangement that increased the overall adhesion force. These results show the importance of examining the effect of the combined adhesion force with two different types of biopolymers present and how the time of interaction affects the magnitude of the force obtained with two-polymer-coated surfaces.  相似文献   

18.
High-performance exclusion chromatography was used to study polysaccharide samples obtained by successive extraction with water, ammonium oxalate, and alkali from waste produced in buckwheat and sunflower processing. The molecular-mass distribution of fractions (protein-polysaccharide complex, polysaccharides, and low-molecular-weight compounds) was analyzed in relation to sources of carbohydrates and methods of their production.  相似文献   

19.
The use of natural substances in health applications may be hampered by the difficulties in establishing the mechanisms of action, especially at molecular-level. The protein-polysaccharide complex extracted from the mushroom Agaricus blazei Murill, referred to as CAb, has been considered for treating various diseases with probable interaction with cell membranes. In this study, we investigate the interaction between CAb and a cell membrane model represented by a Langmuir monolayer of dimyristoyl phosphatidic acid (DMPA). CAb affects the structural properties of DMPA monolayers causing expansion and increasing compressibility. In addition, interaction with DMPA polar heads led to neutralization of the electrical double layer, yielding a zero surface potential at large areas per molecule. CAb remained at the interface even at high surface pressures, which allowed transfer of Langmuir-Blodgett (LB) films onto solid supports with the CAb-DMPA mixture. The mass transferred, according to quartz crystal microbalance (QCM) measurements, increased linearly with the number of deposited layers. With UV-vis absorption, fluorescence and FTIR spectroscopies, we confirmed that the LB films contain polysaccharides, proteins and DMPA. Therefore, the CAb biological action must be attributed not only to polysaccharides but also to proteins in the complex.  相似文献   

20.
Drug delivery systems (DDS) are used to achieve a higher therapeutic effects of a pharmaceutical drug or natural compound in a specific diseased site with minimal toxicological effect and these systems consists of liposomes, microspheres, gels, prodrugs and many. Nanotechnology is a rapidly developing multi-disciplinary science that ensures the fabrication of the polymers to nanometer scale for various medical applications. Uses of biopolymers in DDS ensure the biocompatibility, biodegradability and low immunogenicity over the synthetic ones. Biopolymers such as silk fibroins, collagen, gelatin, albumin, starch, cellulose and chitosan can be easily made into suspension that serve as delivery vehicles for both macro and mini drug molecules. There are various methods such as supercritical fluid extraction, desolvation, electrospraying, spray-drying, layer-by-layer self-assembly, freeze-drying and microemulsion introduced to make these DDS. This drug carrier systems enhance the drug delivery actively and can be used in ocular, transdermal, dental or intranasal delivery systems. This review describes the new trends in nanomaterials based drug delivery systems mainly using biopolymers such as proteins (silk fibroin, collagen, gelatin and albumin) and polysaccharides (chitosan, alginate, cellulose and starch).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号