首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rheological behavior of unentangled and entangled semidilute solution of anionic polyelectrolyte sodium carboxymethyl cellulose (NaCMC) containing cationic surfactant cetyltrimethylammonium bromide (C16TAB) was investigated. The results reveal that the rheological properties of these semidilute NaCMC solutions depend on the amount of C16TAB added. In the unentangled semidilute NaCMC solution (0.5 g/L), the viscosity decreases with the increase of C16TAB amount in the low surfactant concentration region (below the critical aggregation concentration, CAC). However, in high surfactant concentrations (above CAC), the viscosity decreases sharply with the increase in C16TAB amount. It is found that viscosity change of NaCMC solution could be described using Colby’s model when surfactant concentrations are between CAC and saturated concentration (Cs), suggesting that no inter-polymer interaction exists between C16TAB and NaCMC in the unentangled semidilute solution. However, for the entangled semidilute NaCMC solution (5 g/L), the addition of C16TAB leads to an increase in viscosity. Meanwhile, the solution exhibits an enhanced shear thinning behavior due to adding more C16TAB than 1 mM. The viscosity increase is ascribed to the physical cross linking of surfactant micelles with NaCMC chains. Furthermore, it is suggested that the enhanced shear thinning behavior results from weak interaction between NaCMC chains and C16TAB micelles.  相似文献   

2.
Interactions between anionic polyelectrolyte, poly(acrylic acid) (PAA), and cationic surfactant, alkyltrimethylammonium bromide (C n TAB), were investigated by rheological measurements in semidilute PAA solution. The dependences of the rheological behavior on the chain length of the surfactant, PAA neutralization degree, and temperature were discussed. The results revealed that both dodecyl and cetyltrimethylammonium bromides (C12TAB and C16TAB) could increase the viscosity of PAA solution when the surfactant amounts surpassed a critical surfactant concentration (C c), and C c of C16TAB was lower than that of C12TAB at same PAA neutralization degree. The increase of viscosity is attributed to the surfactant micelles bridging of the polymer chains and confine the mobility PAA chain. On the other hand, it is found that the hydrogen bonding also played an important role in the PAA–C n TAB system, especially in lower neutralization degree PAA solution, which results in the viscosity increase rapidly with the added surfactant into lower neutralization degree PAA solution.  相似文献   

3.
The adsorption of mixed solutions containing an anionic polyelectrolyte, carboxymethylchitosan (CMCH), and cationic gemini surfactants, alkanediyl-bis-(dimethyldodecyl-ammonium bromide) (C12-s-C12, s?=?2, 6, 12), has been investigated by surface tension method. The oppositely charged polyelectrolyte and the surfactants co-adsorb at the surface to form highly surface-active complexes. Combining the surface tension data with the Gibbs equation, it is referred that the surface layers of the mixed solutions have the multi-level structure, which includes the sublayers beneath an outermost layer. The gemini surfactant spacer with different length takes different conformations in the surface layers. The salt (NaBr) effects on the adsorption of the mixtures have also been studied. The spacer length of C12-s-C12 influences the responses of CMCH/C12-s-C12 mixtures to the salt effects. The comprehensive salt effects depend on the competition between the salt-enhancing effect and the salt-weakening effect.  相似文献   

4.
Changes in critical micellar concentrations (CMC’s) of gemini surfactant, α, ω-ethane bis(dimethyl cetyl ammonium bromide) (C16-2-C16) with different concentrations of ethylene glycol (EG) addition have been investigated by electrical conductivity method. Subsequently, alkaline hydrolysis of ethyl acetate (EA) in the presence of C16-2-C16 and C16-2-C16-EG has been studied conductometrically at 303.2 and 313.2 K, respectively. It was found that an increase in concentrations of EG added to C16-2-C16 aqueous solutions caused an increase in CMC’s of C16-2-C16, provoked by the decrease in the interfacial Gibbs energy contribution to G M. The hydrolysis of EA showed catalytic and restrained dual behavior in the presence of surfactant, it may be related to higher microviscosity and change of morphology with increased surfactant for C16-2-C16 at higher concentration. Addition of EG did not change microenvironment in micellar interfacial region significantly, which had less effect on gemini C16-2-C16 micellar catalytic efficiency.  相似文献   

5.
皮瑛瑛  尚亚卓  刘洪来  胡英 《化学学报》2005,63(14):1281-1287
摘要 采用荧光探针法和电导法研究了正离子偶联表面活性剂(C12H25(CH3)2N-(CH2)6-N(CH3)2C12H25•2Br) (12-6-12• 2Br)和带相反电荷聚电解质聚丙烯酸钠(NaPA)的相互作用, 结果表明: 由于静电相互作用, 12-6-12•2Br和NaPA之间可以形成类胶束或复合物. 对比十二烷基三甲基溴化铵(DTMAB)与NaPA复配体系的荧光光谱, 发现偶联表面活性剂与NaPA的相互作用强于传统表面活性剂. 此外, 还研究了盐和醇对偶联表面活性剂/聚丙烯酸钠的复配体系微极性的影响, 发现盐和醇对表面活性剂在聚电解质上形成类胶束和复合物的溶解都有一定的促进作用.  相似文献   

6.
Micellization behavior of the twin-tailed surfactants can be modulated by the addition of various modifiers. Ionic liquids (ILs) are one of them and are documented here. The beauty of these environmentally benign neoteric molecules lies in their structural versatility. Here, we have investigated the effect of three ILs: 1-butyl-3-methylimidazolium bromide ([C4mim][Br]), 1-hexyl-3-methylimidazolium bromide ([C6mim][Br]), and 1-octyl-3-methylimidazolium bromide ([C8mim][Br]) on the aggregation and surface adsorption behavior of cationic gemini surfactant, bis(hexadecyldimethyl ammonium)propane dibromide (16-3-16) through experimentally measured electrical conductivities, surface tensions, and by spectral methods (UV-vis absorbance and fluorescence measurements). The main focus of the study is to observe the effect of added ILs on the critical micelle concentration (cmc), various surface parameters, aggregation number, and size of the aggregates of gemini surfactant. The results show that the more hydrophobic ILs, that is, [C6mim][Br] and [C8mim][Br] behave as electrolyte at lower concentration and cosurfactant at higher concentration, whereas moderately hydrophobic IL [C4mim][Br] acts as an electrolyte at all concentration ranges studied. The modulating effects of ILs were also compared with conventional electrolyte (NaBr) at similar conditions.  相似文献   

7.
The formation of thin wetting films on silica surface from aqueous solution of (a) tetradecyltrimetilammonium bromide (C14TAB) and (b) surfactant mixture of the cationic C14TAB with the anionic sodium alkyl- (straight chain C12–, C14– and C16–) sulfonates, was studied using the microscopic thin wetting film method developed by Platikanov. Film lifetimes, three-phase contact (TPC) expansion rates, receding contact angles and surface tension were measured. It was found that the mixed surfactants caused lower contact angles, lower rates of the thin aqueous film rupture and longer film lifetimes, as compared to the pure C14TAB. This behavior was explained by the strong initial adsorption of interfacial complexes from the mixed surfactant system at the air/solution interface, followed by adsorption at the silica interface. The formation of the interfacial complexes at the air/solution interface was proved by means of the surface tension data. It was also shown, that the chain length compatibility between the anionic and cationic surfactants controls the strength of the interfacial complex and causes synergistic lowering in the surface tension. The film rupture mechanism was explained by the heterocoagulation mechanism between the positively charged air/solution interface and the solution/silica interface, which remained negatively charged.  相似文献   

8.

Micellization behavior of cationic monomeric surfactants, hexadecyltrimethylammonium bromide (CTAB), cetylpyridinium bromide (CPB), cetylpyridinium chloride (CPC), tetradecyltrimethylammonium bromide (TTAB), and dimeric (gemini) cationic surfactant pentamethylene‐1, 5‐bis(hexadecyldimethylammonium bromide) with formula C16H33(CH3)2N+(CH2)5N+(CH3)2C16H33 · 2Br?, abbreviated as 16‐5‐16, in mixed states (binary) have been studied by conductivity. The micellar compositions, activities of the components, and their mutual interactions have been estimated from Rubingh's theory. The mixtures show nonideal behavior with favorable interactions.  相似文献   

9.
The UV–vis absorption properties of azo dyes are known to exhibit a variation with the polarity and acidity of the dye environment. The spectral properties of a series of anionic azo dyes were characterized to further probe the interaction of these dyes with two types of surfactant aggregates: (1) the spherical micelles formed in aqueous solution by alkyltrimethylammonium bromide (CnTAB) surfactants with n = 10–16 and (2) the unilamellar vesicles spontaneously formed in water from binary mixtures of the oppositely-charged double-tailed surfactants cationic didodecyldimethylammonium bromide (DDAB) and anionic sodium dioctylsulfosuccinate (Aerosol OT or AOT). The observed dye spectra reflect the solvatochromic behavior of the dyes and suggest the location and orientation of the dye within the surfactant aggregates. Deconvolution of the overall spectra into sums of Gaussian curves more readily displays any contributions of tautomeric forms of the azo dyes resulting from intramolecular hydrogen bonding. The rich variation in UV/vis absorption properties of these anionic azo dyes supports their use as sensitive tools to explore the nanostructures of surfactant aggregates.  相似文献   

10.
In the present study, we have investigated the self-association, mixed micellization, and thermodynamic studies of a cationic gemini (dimeric) surfactant, hexanediyl-1,6-bis(dimethylcetylammonium bromide (16-6-16)) and a cationic conventional (monomeric) surfactant, cetyltrimethylammonium bromide (CTAB). The critical micelle concentration (CMC) of pure (16-6-16 and CTAB) and mixed (16-6-16+CTAB) surfactants was measured by electrical conductivity, dye solubilization, and surface tension measurements. The surface properties (viz., C20 (the surfactant concentration required to reduce the surface tension by 20 mN/m), ΠCMC (the surface pressure at the CMC), Γmax (maximum surface excess concentration at the air/water interface), Amin (the minimum area per surfactant molecule at the air/water interface), etc.) of micellar (16-6-16 or CTAB) and mixed micellar (16-6-16+CTAB) surfactant systems were evaluated. The thermodynamic parameters of the micellar (16-6-16 and CTAB) and mixed micellar (16-6-16+CTAB) surfactant systems were also evaluated.  相似文献   

11.
The present research work is associated with the fluorescence investigations of binary aqueous mixed surfactants solutions of anionic bis-sulfosuccinate gemini surfactant (BSGSMA1,8) and three different conventional surfactants—anionic viz. sodium dodecyl sulfate (SDS), cationic viz. cetyl trimethyl ammonium bromide (CTAB), and nonionic surfactant viz. Triton X 100. Steady-state fluorescence spectroscopy technique has been utilized to examine the micellization behavior of aqueous solution of pure myristyl alcohol-based BSGSMA1,8 having flexible methylene chain [(CH2)8] as spacer group. Critical micelle concentration (CMC), aggregation number (N), and micropolarity of pure and mixed surfactants systems were explored during the investigations. The results revealed the best synergism behavior of prepared gemini BSGSMA1,8 with SDS as compared to CTAB and Triton X 100. The maximum reduction in the value of pyrene intensity ratio (I1/I3) was observed for gemini and SDS mixed surfactant solution. On the other hand, the increased I1/I3 value of mixed gemini with Triton X 100 exhibited that mixed surfactant system of anionic gemini BSGSMA1,8 with non-ionic Triton X 100 is not as compact as other mixed surfactant systems. Aggregation number increased and micropolarity decreased with increased concentration of gemini surfactants.  相似文献   

12.
Effect of the concentration of water-soluble polyanion (sodium carboxymethylcellulose, NaCMC) on the interaction between a cationic surfactant (1-dodecyl-3-methylimidazolium bromide, C12mimBr) and NaCMC in aqueous solution has been studied by isothermal titration microcalorimetry (ITC), conductivity, surface tension, and rheological measurements. From the surfactant/polymer interacting enthalpy, it can be deduced that the electrostatic attraction between the cationic surfactant and anionic polyelectrolyte causes an endothermic process, and the C12mimBr monomers binding to the NaCMC chains to form micelle-like aggregates through hydrophobic interaction is an exothermic process. Increasing the NaCMC concentration causes the interaction between C12mimBr and NaCMC to decrease, and the characteristic surfactant concentrations, including the critical aggregation surfactant concentration (CAC), the surfactant concentration to form free micelles (Cm), and the saturation concentration of surfactant on the NaCMC chains (CS) to increase. Because of the strong electrostatic interaction between C12mimBr and NaCMC, the formation of C12mimBr/NaCMC complexes can lead to precipitation or redissolution depending on solution composition, so the critical precipitation concentration (CP) and the onset of a redissolution concentration (CR) has been determined by the electrical conductivity. The rheological results reveal a dramatic increase in solution viscosity around the CAC, attributed to interpolymer cross-linking through the formation of mixed micelles involving the carboxylic acid groups of NaCMC and the surfactant.  相似文献   

13.
The dynamic surface elasticity of the solution of carboxymethylchitosan (CMCH) and cetyltrimethylammonium bromide (C16TAB) was measured as a function of the surfactant concentration and the surface age by the oscillating drop method. The results showed that the surface layer of the CMCH/C16TAB solution transformed from loose to structured with the increase in the surfactant concentration. The surface elasticity versus the surface pressure curve during the adsorption showed different features at different surfactant concentration ranges, which was connected with the structural transformation of the surface layer. Our results show that the measurement of dynamic surface dilational properties is a powerful tool for studying the surface kinetics, which is helpful for dealing non-equilibrium systems in industry.  相似文献   

14.
Surfactant aggregates have long been considered as a tool to improve drug delivery and have been widely used in medical products. The pH-responsive aggregation behavior in anionic gemini surfactant 1,3-bis(N-dodecyl-N-propanesulfonate sodium)-propane (C12C3C12(SO3)2) and its mixture with a cationic monomeric surfactant cetyltrimethylammonium bromide (CTAB) have been investigated. The spherical-to-wormlike micelle transition was successfully realized in C12C3C12(SO3)2 through decreasing the pH, while the rheological properties were perfectly enhanced for the formation of wormlike micelles. Especially at 140 mM and pH 6.7, the mixture showed high viscoelasticity, and the maximum of the zero-shear viscosity reached 1530 Pa·s. Acting as a sulfobetaine zwitterionic gemini surfactant, the electrostatic attraction, the hydrogen bond and the short spacer of C12C3C12(SO3)2 molecules were all responsible for the significant micellar growth. Upon adding CTAB, the similar transition could also be realized at a low pH, and the further transformation to branched micelles occurred by adjusting the total concentration. Although the mixtures did not approach the viscosity maximum appearing in the C12C3C12(SO3)2 solution, CTAB addition is more favorable for viscosity enhancement in the wormlike-micelle region. The weakened charges of the headgroups in a catanionic mixed system minimizes the micellar spontaneous curvature and enhances the intermolecular hydrogen-bonding interaction between C12C3C12(SO3)2, facilitating the formation of a viscous solution, which would greatly induce entanglement and even the fusion of wormlike micelles, thus resulting in branched microstructures and a decline of viscosity.  相似文献   

15.
Using surface tension and fluorescence methods, the surface and solution properties of two cationic gemini surfactants {pentanediyl-1,5-bis(dimethylcetylammonium bromide) and hexanediyl-1,6-bis(dimethylcetylammonium bromide)} (referred to as 16-5-16 and 16-6-16) have been studied in the presence and absence of primary linear alkanols. Parameters studied include the critical micelle concentration (CMC), C 20 (the surfactant concentration required to reduce the surface tension of the solvent by 20 mN·m?1), Г max (maximum surface excess), and A min (minimum surface area per molecule). These parameters indicate mixed micelle formation and, therefore, surfactant-additive interaction parameters in mixed micelles and mixed monolayers, as well as activity coefficients, were calculated. A synergistic effect was observed in all instances and was found to be correlated with the chain length of the alkanols. The CMC values of 16-s-16 (s = 5, 6) decrease with increasing alkanol concentration and the extent of this effect follows the sequence: 1-octanol (C8OH) > 1-heptanol (C7OH) > hexan-1-ol (C6OH) > 1-pentanol (C5OH) > butanol (C4OH). The micelle aggregation number (N agg) of mixed micelles has been obtained using the steady state fluorescence quenching method. The micropolarity of gemini/alkanol systems has been evaluated from the ratio of intensity of peaks (I 1/I 3) of the pyrene fluorescence emission spectra. Results are interpreted on the basis of the structure of mixed micelles and monolayers.  相似文献   

16.
利用分子模拟方法研究了十六烷基三甲基溴化铵(C16TAB)分子数对C16TAB/GO插层复合物的结构变化,探讨了C16TAB在GO层间的排列方式,并通过实验数据进行验证.模拟结果表明,优化后GO结构模型的层间距为0.849 nm;C16TAB/GO插层复合物的层间距随着C16TAB分子数的增加呈5个阶梯状逐渐增大,层间距分别为1.56、1.98、2.33、2.76和3.40 nm,插层饱和时C16TAB分子达到28个.实验结果显示,随着C16TAB分子数的增加,C16TAB/GO插层复合物的层间距逐渐增大,插层饱和时为3.40 nm,实验结果与模拟结果能够很好地吻合.C16TAB在GO层间可能的排列方式为1~5层平躺排列或单层平躺、单层倾斜和单层直立,从能量和结构的角度探明了C16TAB在GO层间的最优排列为1~5层平躺排列.  相似文献   

17.
利用分子模拟方法研究了十六烷基三甲基溴化铵(C16TAB)分子数对C16TAB/GO插层复合物的结构变化,探讨了C16TAB在GO层间的排列方式,并通过实验数据进行验证。模拟结果表明,优化后GO结构模型的层间距为0.849 nm;C16TAB/GO插层复合物的层间距随着C16TAB分子数的增加呈5个阶梯状逐渐增大,层间距分别为1.56、1.98、2.33、2.76和3.40 nm,插层饱和时C16TAB分子达到28个。实验结果显示,随着C16TAB分子数的增加,C16TAB/GO插层复合物的层间距逐渐增大,插层饱和时为3.40 nm,实验结果与模拟结果能够很好地吻合。C16TAB在GO层间可能的排列方式为1~5层平躺排列或单层平躺、单层倾斜和单层直立,从能量和结构的角度探明了C16TAB在GO层间的最优排列为1~5层平躺排列。  相似文献   

18.
The rheological behavior of the aqueous solutions of mixed sulfate gemini surfactant with no spacer group, referred to as d‐C12S, and dodecyltrimethylammonium bromide (C12TABr) at a total concentration of 100 mmol·L−1 but different molar ratios of C12TABr to d‐C12S (α1) was investigated using steady rate and frequency sweep measurements. The wormlike micelles were formed over a narrow α1 range of 0.20–0.27. The viscoelastic solutions exhibited Maxwell fluid behavior. At the optimum molar ratio of 0.25, the zero‐shear viscosity was as high as 600 Pa·s and the length of the mixed wormlike micelle was about 0.45–0.85 µm. The present result provides an example to construct long wormlike micelles by anionic gemini surfactant.  相似文献   

19.
亚微米级多刺状星形氧化铜的制备   总被引:2,自引:0,他引:2  
在阳离子gemini表面活性剂[C16H33(CH3)2N(CH2)4N(CH3)2C16H33]•2Br (16-4-16)存在条件下, 以六次甲基四胺为沉淀剂, 利用水热合成法制备了大量多刺状星形亚微米级氧化铜. 用X射线衍射(XRD), X射线光电子能谱(XPS), 扫描电子显微镜(SEM)和透射电子显微镜(TEM)等多种手段对制备产物的表征结果表明, 所得产物是具有单斜结构多刺状星形氧化铜. 考察了表面活性剂浓度、温度以及铜源对产物物相及其形貌的影响.  相似文献   

20.
基于改进的Hummers法制备氧化石墨(GO),并以长链烷基季铵盐(CnTAB)对其进行插层处理;通过改变CnTAB的链长、浓度,得到系列CnTAB/GO插层复合物。采用XRD和元素分析对产物的最大底面间距及CnTAB插入量进行表征。结果表明,随着Cn TAB链长的增长、CnTAB浓度的增大,CnTAB/GO插层复合物的最大底面间距逐渐增大。CnTAB通过离子键作用和疏水键作用插入到GO层间,在GO片层上的吸附规律符合修正型(Modified)Langmuir模型,即CnTAB以单分子层吸附在GO片层上。根据CnTAB/GO插层复合物最大底面间距及CnTAB插入量的变化规律分析,得出CnTAB在GO层间的排布模式有单层平躺模式、类双层平躺模式、单层倾斜模式和单层直立模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号