首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several analytical methods were optimised for the analysis of 29 per- and polyfluoroalkyl substances (PFASs), including perfluorocarboxylic acids, perfluoroalkyl sulphonic acids and fluorotelomers (FTs), such as sulphonate, saturated carboxylic acid, unsaturated carboxylic acid, sulphonamide and sulphonamide betaine (FTAB), in environmental samples in order to assess pollution by PFASs around heavily contaminated sites. Non-filtered water samples were extracted, purified and pre-concentrated by a solid-phase extraction (SPE) procedure. Solid samples (sediments, soils and sludges) were extracted through solvent extraction under acidic conditions and thereafter purified and pre-concentrated using the same SPE procedure as for the water samples. An ultra-high performance liquid chromatography coupled to tandem mass spectrometry in negative electrospray ionisation mode was employed to separate and detect targeted compounds. Twelve labelled internal standards were used to provide an adequate correction compensating for matrix effects. The limits of quantification (LOQs) were between 4 and 10 ng/L in water depending on the analytes. For solid samples, the LOQs were 2 ng/g dry weight (dw) in sediments and soils, and 20 ng/g dw in sludges for all analytes. A surrogate parameter method based on the carboxylation of perfluoroalkyl acid precursors under basic pH conditions was furthermore implemented to estimate the occurrence of non-targeted PFAS compounds. In order to evaluate the reliability of these analytical methods, environmental samples collected around a training area in France, where aqueous fire-fighting foam is used, were analysed. Of all the compounds detected in these environmental samples, 6:2 FTAB was found in the highest concentrations.  相似文献   

2.
全氟/多氟化合物分析方法的研究进展   总被引:1,自引:0,他引:1  
贺思思  史亚利  蔡亚岐  张春晖 《色谱》2020,38(3):287-296
随着全氟和多氟化合物(perfluoroalkyl and polyfluoroalkyl substances,PFASs)被列入《斯德哥尔摩公约》的持久性有机污染物名录,各国对于该类物质的关注逐步升高。该类物质在环境中的广泛检出,使得其环境行为研究不断扩展和加深。目前,针对不同类型PFASs的样品前处理方式与检测方法也在不断发展中,而从中选择最合适的前处理和分析方法是开展PFASs环境科学、管理和污染控制研究的前提。该文针对传统PFASs及其异构体、PFASs前体物和新型PFASs等的样品前处理方法、色谱-质谱分析方法进行归纳总结,认识其现状和问题,并在此基础上对其发展进行了展望。  相似文献   

3.

A quantitative method for the determination of per- and polyfluoroalkyl substances (PFAS) using liquid chromatography (LC) tandem mass spectrometry (MS/MS) was developed and applied to aqueous wastewater, surface water, and drinking water samples. Fifty-three PFAS from 14 compound classes (including many contaminants of emerging concern) were measured using a single analytical method. After solid-phase extraction using weak anion exchange cartridges, method detection limits in water ranged from 0.28 to 18 ng/L and method quantitation limits ranged from 0.35 to 26 ng/L. Method accuracy ranged from 70 to 127% for 49 of the 53 extracted PFAS, with the remaining four between 66 and 138%. Method precision ranged from 2 to 28% RSD, with 49 out of the 53 PFAS being below < 20%. In addition to quantifying > 50 PFAS, many of which are currently unregulated in the environment and not included in typical analytical lists, this method has efficiency advantages over other similar methods as it utilizes a single chromatographic separation with a shorter runtime (14 min), while maintaining method accuracy and stability and the separation of branched and linear PFAS isomers. The method was applied to wastewater influent and effluent; surface water from a river, wetland, and lake; and drinking water samples to survey PFAS contamination in Australian aqueous matrices. The compound classes FTCAs, FOSAAs, PFPAs, and diPAPs were detected for the first time in Australian WWTPs and the method was used to quantify PFAS concentrations from 0.60 to 193 ng/L. The range of compound classes detected and different PFAS signatures between sample locations demonstrate the need for expanded quantitation lists when investigating PFAS, especially newer classes in aqueous environmental samples.

Graphical abstract

  相似文献   

4.
Fluorotelomer alcohols (FTOHs) are important polyfluorinated raw materials that belong to the general category of perfluoroalkyl substances (PFAS). PFAS, including perfluoroalkyl carboxylates (PFCAs) and perfluoroalkyl sulfonates, have recently attracted considerable attention because they are persistent and found globally in the environment. FTOHs are precursors that may degrade in the environment to PFCAs. The development of analytical methods for determination FTOHs in environmental samples is necessary to determine the environmental presence of FTOHs. This work presents the development and validation of a liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for the determination of FTOHs (6-2, 8-2, 10-2) in aqueous samples. Chromatographic conditions were optimized in order to obtain focused FTOH chromatographic peaks. The mobile phase and mass spectrometric conditions were optimized to enable formation of deprotonated FTOH molecules in the negative ion electrospray mode. Two extraction methods were investigated using acetonitrile and methyl tert-butyl ether (MTBE). These methods were validated for a range of environmental water samples fortified with FTOHs at three different levels. Both extraction methods resulted in recoveries from 70 to 120%. Detection limits of FTOHs were estimated to be approximately 0.09 ng/mL for LC/MS/MS detection. An LC/MS method was also developed for FTOH determination with an estimated 1.2 ng/mL limit of detection. Various sample storage scenarios were investigated. It was determined that the aqueous samples of FTOHs are best preserved by storing them frozen in sealed vials with aluminum foil lined septa.  相似文献   

5.
A sensitive and confirmatory analytical method has been developed for the determination of 12 ionic per- and polyfluorinated alkyl substances (PFAS) in fine airborne particulate matter (PM2.5) at trace levels. The proposed method includes extraction of PM2.5-bound PFAS by microwave-assisted extraction (MAE) followed by centrifugation and injection into the liquid chromatograph coupled to a triple quadrupole tandem mass spectrometry system (LC-MS/MS). The main parameters affecting the performance of MAE were optimised using statistical design of experiments (DoE). Recoveries ranged from 83 to 120% and the method quantification limit (MQL) was 1.4 pg m(-3), when air volumes of 720 m(3) were sampled. This method was successfully applied to 41 samples collected from five stations of the monitoring network of the Valencian Regional Government (Spain) during April-July 2010. Eight out of 12 PFCs investigated were quantified in at least one sample (PFBA, PFPeA, PFHxS, 6:2 FTS, PFOA, PFNA, PFOS and PFDA). The measured concentrations ranged from 1.4 to 34.3 pg m(-3).  相似文献   

6.
Contaminants of emerging concern (CECs) such as per- and polyfluoroalkyl substances (PFAS) have attracted significant interest from researchers, policymakers, and water treatment facilities. This is because PFAS are highly persistent in the environment and tend to be bio-accumulative thus causing adverse effects on terrestrial and aquatic life. Therefore, there is a need for simpler and fast methods for the determination of PFAS in water sources. This work aims at the application of dispersive magnetic solid-phase extraction (DMSPE) for the enrichment of PFAS in various surface water samples. Magnetic Fe3O4@MIL-101 (Cr) was used as an adsorbent in MSPE. Fe3O4@MIL-101(Cr) was used for the first time for the preconcentration and extraction of PFAS in various river water samples. The concentrations of target analytes in water samples were determined using high performance liquid chromatography-diode array detector and ultra-high performance liquid chromatography-tandem mass spectrometry analysis. The combination of optimized DMSPE with HPLC-DAD and UHPLC-MS/MS provided wide linear range (1–5000 ng/L and 0.05–2000 ng/L, low limits of detection (0.3–0.66 ng/L and 0.011–0.04 ng/L) and limits of quantification (1.0–2.2 ng/L and 0.04–0.12 ng/L). Moreover, acceptable intraday and interday precision based on the relative standard deviation (RSD) lower than 5% were obtained. The developed method showed remarkable practicability for the analysis of ultra-trace PFAS in water samples.  相似文献   

7.
The performance of three different types of mass spectrometers (MS) coupled to high performance liquid chromatography (HPLC) was compared for trace analysis of perfluoroalkylated substances (PFAS) and fluorotelomer alcohols (FTOHs). Ion trap MS in the full scan and product ion MS2 mode, time-of-flight (TOF) high resolution MS and quadrupole MS in the selected ion mode as well as triple quadrupole tandem MS were tested. Electrospray ionisation in the negative ion mode [ESI-] was best suited for all instruments and compounds. PFAS could only be separated by a buffered mobile phase, but the presence of buffer suppressed the ionisation of FTOHs. Therefore, two independent chromatographic methods were developed for the two compound classes. Mass spectra and product ion spectra obtained by in-source and collision induced dissociation fragmentation are discussed including ion adduct formation. Product ion yields of PFAS were only in the range of 0.3 to 12%, independent from the applied MS instrument. Ion trap MS2 gave product ion yields of 20 to 62% for FTOHs, whereas only 4.1 to 5.8% were obtained by triple quadrupole tandem MS. Ion trap MS was best suited for qualitative analysis and structure elucidation of branched isomeric structures of PFAS. Providing typical detection limits of 5 ng injected in MS2 mode, it was not sensitive enough for selective trace amount quantification. TOF high resolution MS was the only technique combining high selectivity and excellent sensitivity for PFAS analysis (detection limits of 2 to 10 pg), but lacked the possibility of MS-MS. Triple quadrupole tandem MS was the method of choice for quantification of FTOHs with detection limits in the low pg range. It is also well suited for the determination of PFAS, though its detection limits of 10 to 100 pg in tandem MS mode are about one order of magnitude higher than for TOF MS.  相似文献   

8.
The thermal stability of several commonly used crystalline matrix‐assisted ultraviolet laser desorption/ionization mass spectrometry (UV‐MALDI‐MS) matrices, 2,5‐dihydroxybenzoic acid (gentisic acid; GA), 2,4,6‐trihydroxyacetophenone (THA), α‐cyano‐4‐hydroxycinnamic acid (CHC), 3,5‐dimethoxy‐4‐hydroxycinnamic acid (sinapinic acid; SA), 9H‐pirido[3,4‐b]indole (nor‐harmane; nor‐Ho), 1‐methyl‐9H‐pirido[3,4‐b]indole (harmane; Ho), perchlorate of nor‐harmanonium ([nor‐Ho + H]+) and perchlorate of harmanonium ([Ho + H]+) was studied by heating them at their melting point and characterizing the remaining material by using different MS techniques [electron ionization mass spectrometry (EI‐MS), ultraviolet laserdesorption/ionization‐time‐of‐flight‐mass spectrometry (UV‐LDI‐TOF‐MS) and electrospray ionization‐time‐of‐flight‐mass spectrometry (ESI‐TOF‐MS)] as well as by thin layer chromatography analysis (TLC), electronic spectroscopy (UV‐absorption, fluorescence emission and excitation spectroscopy) and 1H nuclear magnetic resonance spectroscopy (1H‐NMR). In general, all compounds, except for CHC and SA, remained unchanged after fusion. CHC showed loss of CO2, yielding the trans‐/cis‐4‐hydroxyphenylacrilonitrile mixture. This mixture was unambiguously characterized by MS and 1H‐NMR spectroscopy, and its sublimation capability was demonstrated. These results explain the well‐known cluster formation, fading (vanishing) and further recovering of CHC when used as a matrix in UV‐MALDI‐MS. Commercial SA (SA 98%; trans‐SA/cis‐SA 5 : 1) showed mainly cis‐ to‐trans thermal isomerization and, with very poor yield, loss of CO2, yielding (3′,5′‐dimethoxy‐4′‐hydroxyphenyl)‐1‐ethene as the decarboxilated product. These thermal conversions would not drastically affect its behavior as a UV‐MALDI matrix as happens in the case of CHC. Complementary studies of the photochemical stability of these matrices in solid state were also conducted. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
A comparison is made between two high resolution, surface-based, mass spectrometric methods: time-of-flight secondary ion mass spectrometry (TOF-SIMS) and matrix-assisted laser desorption/ionisation mass spectrometry (MALDI TOF-MS) in indication of abietic and gibberellic acids molecular profiles on different chromatographic thin layers. The analytes were applied to silica gel chromatographic thin layers with SIMS on-line interfacing channel, monolithic silica gel ultra-thin layers, and thin layers specifically designed for direct Raman spectroscopic analysis. Two MALDI matrices were used in this research: ferulic acid and 2,5-dihydroxybenzoic acid. The silica gel SIMS-interfacing channel strongly supported formation of numerous different MALDI MS fragments with abietic and gibberellic acids, and ferulic acid matrix. The most intense fragments belonged to [M-OH](+) and [M](+) ions from ferulic acid. Intense conjugates were detected with gibberellic acid. The MALDI MS spectrum from the monolithic silica gel surface showed very low analyte signal intensity and it was not possible to obtain MALDI spectra from a Raman spectroscopy treated chromatographic layer. The MALDI TOF MS gibberellic acid fragmentation profile was shielded by the matrix used and was accompanied by poor analyte identification. The most useful TOF-SIMS analytical signal response was obtained from analytes separated on monolithic silica gel and a SIMS-interfacing modified silica gel surface. New horizons with nanostructured surfaces call for high resolution MS methods (which cannot readily be miniaturised like many optical and electrochemical methods) to be integrated in chip and nanoscale detection systems.  相似文献   

10.
Capillary electrophoresis (CE) offers fast and high‐resolution separation of charged analytes from small injection volumes. Coupled to mass spectrometry (MS), it represents a powerful analytical technique providing (exact) mass information and enables molecular characterization based on fragmentation. Although hyphenation of CE and MS is not straightforward, much emphasis has been placed on enabling efficient ionization and user‐friendly coupling. Though several interfaces are now commercially available, research on more efficient and robust interfacing with nano‐electrospray ionization (ESI), matrix‐assisted laser desorption/ionization (MALDI) and inductively coupled plasma mass spectrometry (ICP) continues with considerable results. At the same time, CE‐MS has been used in many fields, predominantly for the analysis of proteins, peptides and metabolites. This review belongs to a series of regularly published articles, summarizing 248 articles covering the time between June 2016 and May 2018. Latest developments on hyphenation of CE with MS as well as instrumental developments such as two‐dimensional separation systems with MS detection are mentioned. Furthermore, applications of various CE‐modes including capillary zone electrophoresis (CZE), nonaqueous capillary electrophoresis (NACE), capillary gel electrophoresis (CGE) and capillary isoelectric focusing (CIEF) coupled to MS in biological, pharmaceutical and environmental research are summarized.  相似文献   

11.
Pharmaceuticals have become major targets in environmental chemistry due to their presence in aquatic environments (following incomplete removal in wastewater treatment or point-source contaminations), threat to drinking water sources and concern about their possible effects to wildlife and humans. Recently several methods have been developed for the determination of drugs and their metabolites in the lower nanogram per litre range, most of them using solid-phase extraction (SPE) or solid-phase microextraction (SPME), derivatisation and finally gas chromatography mass spectrometry (GC-MS), gas chromatography tandem mass spectrometry (GC-MS/MS) and liquid chromatography electrospray tandem mass spectrometry (LC-ES/MS/MS). Due to the elevated polarity of non-steroidal anti-inflamatory drugs (NSAIDs), analytical techniques based on either liquid chromatography coupled to mass spectrometry (LC-MS) and gas chromatography coupled to mass spectrometry (GC-MS) after a previous derivatisation step are essential. The most advanced aspects of current GC-MS, GC-MS/MS and LC-MS/MS methodologies for NSAID analysis are presented.  相似文献   

12.
Persistent and Mobile Organic Compounds (PMOCs) are emerging pollutants in the environment that have only been rarely detected in previous years due to the lack of analytical techniques available for their analysis. These compounds, being very polar, are able to spread through the surface waters, and reach groundwaters and drinking water sources. The challenges in the analysis of these compounds in water include their poor extraction efficiencies from environmental matrices and weak retention in conventional chromatographic columns. As a result, the toxicity and environmental fate of PMOCs are largely unknown. This review will examine recent developments in sorbent and chromatographic column technologies, and other sample preparation strategies that will enable analysis of PMOCs and advance our knowledge on their fate and transport in the environment. In addition, analysis of these compounds in water via liquid chromatography with tandem mass spectrometry (LC–MS/MS) are discussed in this review.  相似文献   

13.
The presence of pharmaceuticals in drinking water is an emerging environmental concern. In most environmental testing laboratories, LC-MS/MS assays based on selected reaction monitoring are used as part of a battery of tests used to assure water quality. Although LC-MS/MS continues to be the best tool for detecting pharmaceuticals in water, the combined use of hybrid high-resolution mass spectrometry (HRMS) and ultrahigh pressure liquid chromatography (UHPLC) is starting to become a practical tool to study emerging environmental contaminants. The hybrid LTQ-orbitrap mass spectrometer is suitable for integrated quantitative and qualitative bioanalysis because of the following reasons: (1) the ability to collect full-scan HRMS spectra with scan speeds suitable for UHPLC separations, (2) routine measurement of mass with less than 5 ppm mass accuracy, (3) high mass resolving power, and (4) ability to perform on-the-fly polarity switching in the linear ion trap (LTQ). In the present work, we provide data demonstrating the application of UHPLC-LTQ-orbitrap for the detection, characterization and quantification of pharmaceuticals and their metabolites in drinking water.  相似文献   

14.
Branched polyethylenimines (PEIs) with lower average molecular weights (600, 1200 and 1800 Da) have been studied by Electrospray Ionization (ESI) and Matrix‐Assisted Laser Desorption/Ionization (MALDI) mass spectrometry. In both, ESI and MALDI mass spectra, the main distribution arises from protonated PEI oligomers with NH2 end groups, [PEI + H]+, which are observed at m/z 43n + 18. A trace of sodium contamination in the PEI samples results in the presence of a series that appears at m/z 43n + 40 [PEI + Na]+. However, only the MALDI mass spectra show a [PEI + K]+ series at m/z 43n + 56, because of matrix contamination with potassium, and a series generated by condensation of the matrix with PEI at m/z 43n + 30. Collisionally activated dissociation tandem mass spectrometry (CAD (MS/MS)) of protonated PEI oligomers is shown to yield three fragment ion series bn, and Kn. The experiments have demonstrated the capabilities of these mass spectrometry techniques, along with CAD MS/MS to detect and characterize such polar synthetic polymers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
In recent years perfluorinated alkylated substances (PFAS) have appeared as a new class of global pollutant. Besides being an industrially important group of compounds, PFAS are regarded as highly toxic and extraordinarily persistent chemicals that pervasively contaminate human blood and wildlife throughout the world. They are therefore regarded as PBT (persistent, bioaccumulative, and toxic) chemicals. Two comprehensive methods have been developed for determination of eleven of the most environmentally relevant PFAS (seven perfluoroalkylcarboxylates, two perfluoroalkylsulfonates, and two perfluoroctanesulfonamides) in aqueous samples. The compounds were isolated by liquid–liquid extraction (LLE) and solid-phase extraction (SPE), and identification and quantification of the target analytes were achieved by liquid chromatography–electrospray ionization–tandem mass spectrometry (LC–ESI–MS–MS). With LLE detection limits ranged from 0.26 to 0.62 ng L−1 for enrichment of 900-mL water samples; recovery of PFAS with a carbon chain longer than C7 was excellent (80–93%). With SPE, carboxylates with carbon chains <C10 could be extracted efficiently (70–98%) under acidic conditions, and PFOS and PFOSA could be extracted efficiently (81% and 96%, respectively) under basic conditions, resulting in MDLs between 0.25 and 0.64 ng L−1. The LLE method was applied successfully to Austrian wastewater effluent samples.  相似文献   

16.
何建丽  彭涛  谢洁  胡雪艳  常巧英  陈辉  范春林  李存 《色谱》2016,34(7):708-714
建立了使用固相萃取-液相色谱-串联质谱(SPE-LC-MS/MS)同时检测食品包装材料中16种全氟烷基类化合物(PFAS)的方法。分别对样品前处理方法、质谱条件等进行了比较和优化,样品用甲醇超声提取,经Oasis WAX固相萃取小柱净化后,用Atlantis T3 C18色谱柱分离,以乙腈和5 mmol/L乙酸铵溶液为流动相进行梯度洗脱,多反应监测(MRM)负离子模式扫描,同位素内标法和外标法结合定量。16种PFAS在0.5~20.0 μg/L范围内线性关系良好,相关系数(r2)均大于0.99。加标回收率为68.6%~109.2%,RSD为2.5%~18.1%(n=6)。检出限为0.2~0.5 μg/kg,定量限为0.5~1.0 μg/kg。该方法简便、快速、准确,可用于食品包装材料样品中PFAS的检测。  相似文献   

17.
A screening method for analysis of perfluoroalkylated substances (PFAS) in biota samples has been developed and validated using liver samples from polar cod (Boreogadus saida) and glaucous gull (Larus hyperboreus). The method was based on extraction of target compounds from homogenised samples into the solvent mixture used as mobile phase in high-performance liquid chromatography (HPLC), i.e. methanol/water (50:50; 2 mM ammonium acetate). The extract was filtered and directly injected into a HPLC/time-of-flight mass spectrometry (TOF-MS) system. Quantification was performed using 7H-perfluoroheptanoic acid as internal standard and a calibration standard solution dissolved in sample extract for each matrix type (matrix-matched calibration standard). The method is very time and cost efficient. Except for long-chain compounds and perfluorooctane sulfonamide (which cannot be covered by this method), recoveries were between 60% and 115% and method detection limits were in the range 0.04-1.3 ng/g wet weight. Blank values could be neglected with the exception of perfluorooctane sulfonate (PFOS), perfluorohexanoic acid (PFHxA) and perfluorooctanoic acid (PFOA). One of the major challenges in PFAS analysis is ionisation disturbance by co-eluting matrix in the ion source of the mass spectrometer. Both matrix and analyte specific signal enhancement and suppression was observed and quantified. Repeated extractions (n = 3) gave relative standard deviations (RSD) <35% for all PFAS. Accuracy was examined by comparing the screening method to the generally applied ion pair extraction (IPE) method. PFAS concentration values of a glaucous gull liver sample deviated by less than 30% for the two methods, provided that matrix-matched calibration standards were employed in both methods.  相似文献   

18.
In this study, a sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed and validated for the quantification of demethylzeylasteral in rat plasma. Electrospray ionization was operated in the negative ion mode while demethylzeylasteral and oleanolic acid (internal standard) were measured by selected reaction monitoring (demethylzeylasteral: m/z 479.2 → 436.0; oleanolic acid: m/z 454.9 → 407.2). This LC–MS/MS method had good selectivity, sensitivity, accuracy and precision. The pharmacokinetic profiles of demethylzeylasteral were subsequently examined in Wistar rats after oral or intravenous administration.  相似文献   

19.
Conditions are reported for the reverse-phase HPLC analysis of gossypol and of some of its derivatives, including anhydrogossypol, gossypolone, gossypol hexaacetate, and Schiff's base derivatives. It is shown that field desorption (FD) and chemical ionization (CI) mass spectrometry have advantages over electron impact (EI) mass spectrometry for the characterization of these compounds and that combined high-performance liquid chromatography/mass spectrometry (LC/MS), especially when used in the CI mode, is particularly effective.  相似文献   

20.
The determination of gas phase thermochemical properties of per- and polyfluoroalkyl substances (PFAS) is central to understanding the long-range transport behavior of PFAS in the atmosphere. Prior gas-phase studies have reported the properties of perfluorinated sulfonic acid (PFOS) and perfluorinated octanoic acid (PFOA). Here, this study reports the gas phase enthalpies of formation of short- and long-chain PFAS and their precursor molecules determined using density functional theory (DFT) and ab initio approaches. Two density functionals, two ab initio methods and an empirical method were used to compute enthalpies of formation with the total atomization approach and an isogyric reaction. The performance of the computational methods employed in this work were validated against the experimental enthalpies of linear alkanoic acids and perfluoroalkanes. The gas-phase determinations will be useful for future studies of PFAS in the atmosphere, and the methodological choices will be helpful in the study of other PFAS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号