首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
《Analytical letters》2012,45(12):1868-1881
Abstract

A rapid, simple, and sensitive method was developed for the determination of three imidazole derivatives based on their quenching effect on bis(2,4,6-tricholorophenyl) oxalate (TCPO)–H2O2 chemiluminescence (CL) in the presence of rhodamine 6 G. Conditions affecting CL intensity were studied. With sodium dodecyl sulfate (SDS) as the additional agent, the relative standard deviation (RSD) was more twice the RSD without SDS. Under optimal conditions, good linear ranges were obtained from 1.0 × 10?4 g/mL to 1.0 × 10?6 g/mL, 1.0 × 10?5 g/mL to 1.0 × 10?7 g/mL, and 1.0 × 10?5 g/mL to 7.0 × 10?7 g/mL, with detection limits of 8.0 × 10?7 g/mL, 7.0 × 10?8 g/mL, and 8.0 × 10?8 g/mL (S/N = 3) for hydrobenzole hydrochloride, thiamazole, and mizolastine, respectively. The RSDs for 13 consecutive injections of 1.0 × 10?6 g/mL hydrobenzole hydrochloride, thiamazole, and mizolastine were 1.89%, 1.47%, and 1.69%, respectively, and satisfied results were obtained with the method applied to their pharmaceutical preparations. The possible CL mechanism was simply discussed.  相似文献   

2.
An attempt to evaluate the kinetically effective critical micelle concentration CMC of sodium dodecyl sulfate (SDS) in micellar solutions and in O/W emulsions at 40°C and pH 9 utilizing the pseudo first order rate constant of benzyl acetate hydrolysis was implemented. The critical micelle concentration of SDS in micellar solutions was determined by both surface tension measurements utilizing Wilhelmy plate technique and by rate constant of hydrolysis. Hydrolysis reaction of benzyl acetate was monitored in surfactant solutions as well as in o/w emulsions as a function of time. Emulsion droplets were controlled using microfluidizer 110 T and oily droplets were separated from the emulsion by ultracentrifugation at (11,500 rpm or 9,800 g) prior to analysis by high performance liquid chromatography. The value of the critical micelle concentration (CMC) in micellar solutions in the presence of benzyl acetate as determined from the Wilhelmy plate technique was 7.8 × 10?4 moles/L (CMC in micellar solution was 10 times lower than the value in literature due to use of buffer) while the CMC as determined from the kinetic study was 8.8 × 10?4 moles/L. In emulsion systems, using 5% mineral oil, the CMC value was 8.6 × 10?3 moles/L and at 10% oil, the value doubled to 1.73 × 10?2 moles/L. The above results indicate that kinetics can be used to determine CMC in micellar solutions and in o/w emulsions.  相似文献   

3.
The partitioning behavior of four newly synthesized chalcones between aqueous and micellar phases of ionic surfactants (SDS and CTAB) was investigated using ultraviolet-visible spectroscopy. The simple absorption spectra were recorded to study the interaction between these drugs and surfactants (in the concentration range below critical micelle concentration to above critical micelle concentration). The absorption data is also used to determine the number of additive molecules incorporated per micelle of the surfactant. The partition coefficient (Kx) of additives between bulk water phase and the micellar phase was determined in the range of 5.52 × 10+4 to 5.06 × 10+5 at 298 K by differential spectroscopic method. The corresponding standard free energy of partition ΔG°p obtained was in the range of ?27.05 kJmol?1 to ?32.54 kJmol?1. The relative solubility of additives between aqueous and micellar phases in different micellar concentrations was also estimated. The results showed that the chalcones are preferably soluble in cationic surfactant micelles.  相似文献   

4.
《Analytical letters》2012,45(2):299-311
A carbon paste electrode modified with gold nanoparticles (AuMCPE) was used as a highly sensitive sensor for determination of Tyrosine (Tyr), in the presence of an anionic surfactant, sodium dodecyl sulfate (SDS), in aqueous solution. The measurements were carried out by using of differential pulse voltammetry (DPV), cyclic voltammetry (CV), amd chronocoulometry and chronoamperometry methods. The prepared electrode shows voltammetric responses with high sensitivity and selectivity for Tyr in the presence of SDS. The relationship between the oxidation peak current of Tyr and its concentration was obtained linearly and it was 1.0 × 10?7 to 1.0 × 10?5 M with a detection limit of 5.5 × 10?8 M in the absence of SDS. On the other hand the oxidation peak current of Tyr increased significantly at AuMCPE in the presence of SDS and its detection limit was reduced to 2.7 × 10?9 M. The proposed voltammetric approach was also applied to the determination of Tyr concentration in human serum.  相似文献   

5.
《Analytical letters》2012,45(8):1366-1374
Abstract

Chemiluminescence reaction of the system containing europium(III) ion, KMnO4, Na2SO3, and ibuprofen was investigated for the determination of ibuprofen. The introduction of Eu(III) ion into the system of KMnO4-Na2SO3-ibuprofen caused a significant increase in the chemiluminescence signal. The increment of the chemiluminescence signal is proportional to ibuprofen concentration in the range of 5.0 × 10?8–5.0 × 10?6 g/ml with a detection limit of 1 × 10?8 g/ml. The relative standard deviation for 1.0 × 10?7 g/ml ibuprofen solution was 1.7% (n = 11). The proposed method was successfully applied to determine ibuprofen in tablets and human plasma.  相似文献   

6.
《Analytical letters》2012,45(6):898-906
Abstract

A flow injection method combined with chemiluminescence detection was described for the determination of difenidol hydrochloride. Strong chemiluminescence was recorded when difenidol hydrochloride was added into the reaction mixture of N-chlorosuccinimide with dichlorofluorescein in alkaline medium. The experimental conditions that affected the chemiluminescence signal, including the concentrations of reactants, the reaction medium, and the instrumental parameters, were carefully optimized. Under the optimum experimental conditions, the enhanced chemiluminescence intensity was linear related to the concentration of difenidol hydrochloride in the range of 4.0 × 10?9 to 4.0 × 10?7 g/ml. The detection limit for difenidol hydrochloride was 7 × 10?10 g/ml, and the sample throughput was 90/h. The relative standard deviation was 2.5% for 5.0 × 10?8 g/ml difenidol hydrochloride solution (n = 11). The interference of common inorganic ions, excipients, and additives used in pharmaceutical preparation was studied, which showed the method has higher tolerance limit for these substances and has good selectivity. As a preliminary application, the method was applied to the determination of difenidol hydrochloride in tablets, and the satisfactory results were achieved.  相似文献   

7.
《Analytical letters》2012,45(14):2537-2548
Abstract

Chemiluminescence (CL) was achieved by oxidation of sulphide with cerium(IV) in the presence of cinchona alkaloids (quinine, quinidine or cinchonine). The CL intensity was correlated with the concentration of each cinchona alkaloid. Based on this phenomenon, sensitive CL methods for these alkaloids were described. Quinine (4×10?8~1×10?4 g/ml), quinidine (1×10?7 ~ 1×10?3 g/ml) and cinchonine (1×10?6 ~ 8×10?4 g/ml) could be determined with detection limits of 1×10?8 g/ml, 4×10?8 g/ml and 6×10?7 g/ml, respectively.  相似文献   

8.
《Analytical letters》2012,45(1):151-162
Abstract

A novel developed spectrofluorimetric method for the determination of trazodone hydrochloride in the presence of sodium dodecyl sulfate (SDS) surfactant micelles was described. Under optimal conditions, there was a good linear relationship between fluorescence intensity and trazodone hydrochloride concentration in the range of 4.0×10?9 to 8.0×10?6 mol · l?1with the detection limit of 1.3×10?9 mol · l?1 (S/N=3). This method has been used to determine trazodone hydrochloride in biological fluids.  相似文献   

9.
《Analytical letters》2012,45(1-3):38-47
A new flow injection chemiluminescence method for the determination of phenol was proposed, based upon the chemiluminescence reaction of phenol, N-bromosuccinimide, and hydrogen peroxide in neutral aqueous medium in the presence of cetyltrimethylammonium bromide surfactant micelles. The chemiluminescence signal was proportional to the concentration of phenol in the range of 1.0 × 10?7?8.0 × 10?6 g/mL with a detection limit of 3 × 10?8 g/mL. The relative standard deviation for 1.0 × 10?6 g/mL phenol solution was 2.0% (n = 11). The proposed method was successfully applied to the determination of phenol in phenol ear drops. A possible CL reaction mechanism was also discussed briefly.  相似文献   

10.
The present work describes the individual, selective and simultaneous quantification of acetaminophen (ACP) and tramadol hydrochloride (TRA) using a modification‐free boron‐doped diamond (BDD) electrode. Cyclic voltammetric measurements revealed that the profile of the binary mixtures of ACP and TRA were manifested by two irreversible oxidation peaks at about +1.04 V (for ACP) and +1.61 V (for TRA) in Britton‐Robinson (BR) buffer pH 3.0. TRA oxidation peak was significantly improved in the presence of anionic surfactant, sodium dodecyl sulfate (SDS), while ACP signal did not change. By employing square‐wave stripping mode in BR buffer pH 3.0 containing 8×10?4 mol L?1 SDS after 30 s accumulation under open‐circuit voltage, the BDD electrode could be used for quantification of ACP and TRA simultaneously in the ranges 1.0–70 μg mL?1 (6.6×10?6–4.6×10?4 mol L?1) and 1.0–70 μg mL?1 (3.3×10?6–2.3×10?4 mol L?1), with detection limits of 0.11 μg mL?1 (7.3×10?7 mol L?1) and 0.13 μg mL?1 (4.3×10?7 mol L?1), respectively. The practical applicability of the proposed approach was tested for the individual and simultaneous quantification of ACP and/or TRA in the pharmaceutical dosage forms.  相似文献   

11.
《Analytical letters》2012,45(15):2430-2443
Abstract

A highly sensitive method to determine of indium is proposed by adsorption stripping differential pulse cathodic voltammetry (AdSDPCV) method. The complex of indium ions with xylenol orange is analyzed based on the adsorption collection onto a hanging mercury drop electrode (HMDE). After accumulation of the complex at ?0.20 V vs. Ag/AgCl reference electrode, the potential is scanned in a negative direction from ?0.40 to ?0.75 V with the differential pulse method. Then, the reduction peak current of In(III)–XO complex is measured. The influence of chemical and instrumental variables was studied by factorial design analysis. Under optimum conditions and accumulation time of 60 s, linear dynamic range was 0.1–10 ng/ml (8.7 × 10?10 to 8.7 × 10?8 M) with a limit of detection of 0.03 ng/ml (2.6 × 10?10 M); at accumulation time of 5 min, linear dynamic range was 0.04–10 ng/ml (3.4 × 10?10 to 8.7 × 10?8 M) with a limit of detection of 0.013 ng/ml (1.1 × 10?10 M). The applicability of the method to analysis of real samples was assessed by the determination of indium in water, alloy, and jarosite (zinc ore) samples.  相似文献   

12.
《Analytical letters》2012,45(4):563-581
Abstract

The color reaction between Xylenol orange (XO), zirconium (IV) and fluoride ions in the presence of various surfactants alone or in combination was studied at various pH. The XO -zirconium)IV)-fluoride ion ternary complex in mixed micellar media containing a low concentration of N-hexadecylpyridinium chloride (HPC) as a cationic surfactant and large amounts of (poly{oxyethylene)dodecyl ether (Brij 35) as a nonionic surfactant at weakly acidic media was found to be the most stable, and showed a remarkable bathochromic shift and clear contrast against a reagent blank. The maximum absorbance was at 600 nm in the mixed micellar media at pH 3.5, and the apparent molar absorptivities at 600 nm were 7.0 × 104 1 mol?1 cm?1 for zirconium(IV) and 1.4 × 104 1 mol?1 cm?1 for fluoride ion. The calibration curves covered the ranges of 0.5 ~ 20.0 μg/10 ml zirconium! IV) and 0 ~ 20.0 μg/10 ml fluoride ion with the Sandell sensitivities being 0.0013 μg/cm2 for zirconium(IV) and 0.0016 μg/cm2 for fluoride ion.  相似文献   

13.
《Analytical letters》2012,45(1):67-81
Abstract

It was found that the fluorescence intensity of lanthanum (III) (La3+)‐quercetin (Qu) complex is greatly enhanced by proteins in the presence of sodium dodecyl benzene sulfonate (SDBS). Based on this finding, a new fluorimetric method for the determination of proteins was developed. Under optimum conditions, the enhanced intensity of fluorescence is in proportion to the concentration of proteins in the range of 2.5×10?8 to 1.0×10?5 g/mL for bovine serum albumin (BSA), 5.0×10?8 to 1.5×10?5 g/mL for human serum albumin (HSA), and 1.0×10?7 to 1.5×10?5 g/mL for egg albumin (EA). Their detection limits (S/N=3) are 5.0×10?9 g/mL, 7.0×10?9 g/mL, and 2.1×10?8 g/mL, respectively. The interaction mechanism was also studied.  相似文献   

14.
《Analytical letters》2012,45(17):3124-3137
Abstract

A terbium-sensitized fluorescence spectrophotometry method using an anionic surfactant, sodium dodecyl benzene sulphonate (SDBS), was developed for the determination of prulifloxacin (PUFX). It was found that SDBS significantly enhanced the fluorescence intensity of the PUFX–Tb3+ complex (about 13-fold). The optimal experimental conditions were determined as follows: excitation and emission wavelengths of 290 nm and 545 nm, pH 8.0, 4.0 × 10?5 mol L?1 terbium(III), and 4.0 × 10?4 mol L?1 SDBS. The enhanced fluorescence intensity of the system (ΔF) showed a good linear relationship with the concentration of PUFX over the range 6.0 × 10?8 to 2.0 × 10?6mol L?1 with a correlation coefficient of 0.9991. The detection limit (S/N = 3) was determined as 8.5 × 10?9 mol L?1. This method has been successfully applied for the determination of PUFX in pharmaceuticals and human urine/serum samples. Compared with most other methods reported, the rapid and simple procedure proposed here offered higher sensitivity, wider linear range, and good stability. The luminescence mechanism of the system was also discussed in detail. In the fluorescence system of PUFX–Tb3+–SDBS, SDBS acted not only as the surfactant but also as the energy donor.  相似文献   

15.
ABSTRACT

In the present study, a simple, cheap and sensitive electrochemical method based on a cathodically pretreated boron-doped diamond (CPT-BDD) electrode is described for the detection of triclosan with the cationic surfactant (cetyltrimethylammonium bromide, CTAB) media. The oxidation of triclosan was irreversible and exhibited an adsorption controlled process. The sensitivity of the adsorptive stripping voltammetric measurements was significantly improved with addition of CTAB. Using square-wave stripping mode, a linear response was obtained for triclosan determination in Britton-Robinson buffer solution at pH 9.0 containing 2.5 × 10?4 M CTAB at around + 0.67 V (vs. Ag/AgCl) (after 30 s accumulation at open-circuit condition). The method could be used in the range of 0.01–1.0 μg mL?1 (3.5 × 10?8–3.5 × 10?6 M), with a detection limit of 0.0023 μg mL?1 (7.9 × 10?9 M). The feasibility of the proposed method for the determination of triclosan in water samples was checked in spiked tap water.  相似文献   

16.
The dynamics of the changing microenvironment of the fluorescent probe pyrene in slightly cross-linked networks of poly(diallyldimethylmmonium bromide) during diffusion of sodium dodecyl sulfate (SDS) in the gel phase has been investigated by fluorescence spectroscopy. Values of the spectral ratio I3/I1 for pyrene monomer included in SDS micelles in the swollen networks fall between the corresponding values for pyrene in water and for pyrene dissolved in SDS micelles in aqueous solution. In the narrow interval of the surfactant concentrations in the gel phase, the formation of pyrene excimers is observed. The values of the critical micelle concentration in the gel phase (ca. 5 × 10?4 to 8 × 10?4 mol/L) are tenfold lower than in aqueous solutions of the surfactant. The effective micellar diffusion coeffecient D in the gel phase increases with increasing swelling of the network. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
A novel electrochemical sensor for the determination of bisphenol A (BPA) was fabricated by block polyelectrolyte composite films, which composed of diblock polyelectrolyte poly (2-hydroxyethyl methacrylate)-b-poly (2-(dimethylamino) ethyl methacrylate) (PHEMA-b-PDMAEMA, noted as PHD in the later content) and multi-walled carbon nanotubes (MWCNTs). The tertiary amino groups of PDMAEMA can be protonated at physiological pH. The protonated PDMAEMA can thus interact with the negatively charged BPA through electrostatic attraction to increase the BPA sorption capacity and enhance the ability for highly sensitive detection of BPA. The PHD/MWCNTs composite films combine the electrocatalytic property of MWCNTs and the electrostatic attraction of protonated PHD. Because of the above-mentioned excellent property of the composite films, the PHD/MWCNTs/glassy carbon electrode exhibited good electrocatalytic activity to electrooxidation of BPA. The wide linear response range of the BPA sensor was from 4.56 × 10?5 g L?1 to 2.28 × 10?2 g L?1 with a lower detection limit of 2.28 × 10?6 g L?1 (S/N = 3) and high sensitivity 2442.86 μA L g?1 cm?2. The current reached the steady-state current with a shorter response time less than 4 s. The proposed method was successfully applied to determine BPA in real samples (PVC food package, milk, tap water and pond water) and satisfactory results were obtained. These results indicated that the block polyelectrolyte composite have potential applicability of the BPA sensor.  相似文献   

18.
Direct comparison of key physical and chemical-engineering properties of two representative matrices for multipurpose immobilisations was performed for the first time. Polyvinyl alcohol lens-shaped particles LentiKats® and polyelectrolyte complex microcapsules were characterised by advanced techniques with respect to the size distribution of the particles, their inner morphology as revealed by fluorescent probe staining, mechanical resistance, size-exclusion properties, determination of effective diffusion coefficient and environmental scanning electron microscope imaging. While spherical polyelectrolyte complex microcapsules composed of a rigid semipermeable membrane and a liquid core are almost uniform in shape and size (diameter of 0.82 mm; RSD?=?5.6 %), lens-shaped LentiKats® are characterised by wider size distribution (diameter of 3.65 mm; RSD?=?10.3 % and height of 0.341 mm; RSD?=?32.3 %) and showed the same porous structure throughout their whole volume at the mesoscopic (micrometre) level. Despite differences in their inner structure and surface properties, the pore diameter of?~?2.75 nm for regular polyelectrolyte complex microcapsules and?~?1.89 nm for LentiKats® were similar. These results were used for mathematical modelling, which provided the estimates of the effective diffusion coefficient of sucrose. This value was 1.67?×?10?10 m2 s?1 for polyelectrolyte complex microcapsules and 0.36?×?10?10 m2 s?1 for LentiKats®. Recombinant cells Escherichia coli-overexpressing enzyme cyclopentanone monooxygenase were immobilised in polyelectrolyte complex microcapsules and LentiKats® for comparison of their operational stability using model Baeyer–Villiger oxidation of (±)-cis-bicyclo [3.2.0] hept-2-en-6-one to regioisomeric lactones as important chiral synthons for potential pharmaceuticals. Both immobilisation matrices rendered high operational stability for whole-cell biocatalyst with no reduction in the biooxidation rate over 18 repeated reaction cycles.  相似文献   

19.
Effect of anionic surfactant on the optical absorption spectra and redox reaction of basic fuchsin, a cationic dye, has been studied. Increase in the absorbance of the dye band at 546 nm with sodium dodecyl sulfate (SDS) is assigned to the incorporation of the dye in the surfactant micelles with critical micellar concentration (CMC) of 7.3 × 10?3 mol dm?3. At low surfactant concentration (<5 × 10?3 mol dm?3) decrease in the absorbance of the dye band at 546 nm is attributed to the formation of a dye–surfactant complex (1:1). The environment, in terms of dielectric constant, experienced by basic fuchsin inside the surfactant micelles has been estimated. The association constant (KA) for the formation of dye–SDS complex and the binding constant (KB) for the micellization of dye are determined. Stopped‐flow studies, in the premicellar region, indicated simultaneous depletion of dye absorption and formation of new band at 490 nm with a distinct isosbestic point at 520 nm and the rate constant for this region increased with increasing SDS concentration. The reaction of hydrated electron with the dye and the decay of the semireduced dye are observed to be slowed down in the presence of SDS. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 629–636, 2003  相似文献   

20.
The electrocatalysis oxidation of guanosine‐5′‐monophosphate (GMP) was investigated on Mg‐Al layered double hydroxide (LDH) functionalized with sodium dodecyl sulfate (SDS) and room temperature ionic liquid (RTIL) modified glass carbon electrode (GCE). The cyclic voltammogram of GMP on the modified electrode (RTIL/ LDH‐SDS/GCE) exhibited a well defined anodic peak at 1.091 V in 0.2 mol·L?1 pH 4.4 acetate buffer solution. The GMP oxidation was enhanced in the presence of anionic surfactant in the ?lms. The results suggest that the surfactant molecules intercalate the LDH layers to preconcentrate GMP molecules and the RTIL showed good ionic conductivity. The experimental parameters were optimized, the kinetic parameters were investigated and the probable oxidation mechanism was proposed. Under the optimized conditions, the oxidation peak current was proportional to GMP concentration in the range from 5.0×10?7 to 1.0×10?4 mol·L?1 with the correlation coefficient of 0.9987 and the detection limit was 1.0×10?7 mol·L?1. The RTIL/LDH‐SDS/GCE showed a good electrochemical response to the oxidation of GMP and would be developed into a new biosensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号