首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Liquid crystals》1997,23(5):749-758
Morphological, electro-optical and switching properties of polyester resin/nematic liquid crystal composite films have been studied for varying composition (10-40 wt% of LC), temperature (20-50 C), film thickness (10-75 mum) and UV curing time of the matrix (0.25-12 min). The PDLC films were formed by LC separation in a UV polymerization process of the thin layer of oligoester resin (liquid crystal mixture) between ITO coated glass plates. The electro-optical and response behaviour based on the electric field controlled light scattering of the composite films was observed. The results were interpreted in terms of effective anchoring strength at the interface of the polymer and liquid crystal depending either on the area fraction of the interface in the composite film (dependent on the size and shape of the liquid crystal droplets) or the stiffness and resistivity of the polyester resin changing in the course of the crosslinking polymerization.  相似文献   

2.
The different fluorinated liquid crystal (LC) molecules doped to E8 were used as LC component to prepare polymer dispersed liquid crystal (PDLC) films. The mass fraction of the LC mixture is fixed 50.0 wt%. Results indicate that doping 8.0 wt% fluorinated LC molecule ME3CP to E8 significantly reduced the driving voltage of the PDLC films, and the driving voltage reduced with the rise of mass fraction of ME3CP. Besides, the terminal flexible chain length of the fluorinated LC molecule influenced the LC mixture properties based on E8, such as the dielectric anisotropy, birefringence and viscosity of the LC mixture, and the morphology and the electro-optical properties of PDLC films were controlled not only by the physical properties of the LC mixture, but also by the terminal flexible chain length of the fluorinated LC molecule .  相似文献   

3.
In an effort to obtain an improved liquid crystal (LC) alignment layer for liquid crystal display device applications, amorphous diamond‐like carbon thin films were deposited on ITO‐coated glass substrates by an rf magnetron sputtering technique at room temperature and then treated with plasma in various atmospheres. The polarized images and pretilt angles of the LC cells showed that LC alignment was enhanced by post‐plasma treatments of the films. In Raman and X‐ray photoelectron spectroscopy spectra of the films, an increase in the fraction of sp2‐bonding was observed after post‐plasma treatments of the films. In particular, H2 plasma‐treated film had the largest fraction of sp2‐bonding at the film surface and showed much improved alignment capabilities. These results suggest that π‐bondings of the sp2‐structure at the surface rather than the bulk play an important role in LC alignment.  相似文献   

4.
Morphology and electro-optic properties of composite films composed of phenoxy and nematic liquid crystal (LC) have been studied at a film composition of 40/60 (polymer/LC by weight). Effects of temperature, frequency and voltage of applied a. c. electric field on the transmittance and response time of the films were measured.  相似文献   

5.
The relationship between the molecular orientation of a rubbed polyimide film (alignment layer) and that of mesogens in a photopolymerized liquid crystal (LC) coated on the film has been investigated using optical measurements. LC monomers were deposited on the alignment layer and were aligned in one direction. The LC monomers were subsequently photocured. Alignment layers under various rubbing conditions were prepared. It was found that the inclination angle of the refractive index ellipsoid and the optical retardation of photopolymerized LC films are strongly related to the optical anisotropy of the rubbed polyimide film. The photopolymerized LC film exhibited high optical anisotropy when alignment layers with an inclination angle of the refractive index ellipsoid smaller than 6° were used.  相似文献   

6.
In this paper, polymer dispersed liquid crystals (PDLC) films with LC content as low as 40 wt% were prepared, and the electro‐optical properties were carefully investigated. To accomplish this, different (meth)acrylate copolymerizaiton monomers have been used. The electro‐optical properties and morphologies of the PDLC films were strongly influenced by the chemical structure of copolymerization monomers (hydroxypropyl methacrylate (HPMA), glycidyl methacrylate, hydroxypropyl acrylate) and their feed ratio. Lower driven voltage and higher contrast ratio were achieved when the PDLC films showed a morphology with suitably LC domain size. At high HPMA content, a thin polymer film was formed on the surface of PDLC samples, which is beneficial to decrease the total LC content in PDLC devices. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
In order to study the droplet pattern and electro-optic (EO) behaviour of polymer dispersed liquid crystal (PDLC) with the addition of dye, dichroic polymer dispersed liquid crystal (DPDLC) films were prepared using a nematic liquid crystal (NLC), photo-curable polymer (NOA 65) and anthraquinone blue dichroic dye (B2), in equal ratio (1:1) of polymer and liquid crystal (LC) by polymerisation induced phase separation (PIPS) technique. Dichroic dye was taken in different concentration (wt./wt. ratio) as 0.0625%, 0.125%, 0.25%, 0.5% and 1% of the LC mixture in DPDLC films. Initially, in an open circuit when there is no proviso for external electric field (0 V), LC droplets in polymer matrix exhibited bipolar pattern, though on closing the circuit with the increase of electric field pattern of droplets starts changing, LC molecules align along the direction of applied electric field and aligned completely relatively at higher field (30 V), which illustrate vertical radial pattern. Further, results show that the DPDLC film containing 0.0625% dye concentration with consistent average droplet size ~4.30 μm, exhibits the best transmission at lower operating voltage.  相似文献   

8.
ABSTRACT

As a typical class of electrically light-transmittance-switchable (ELTS) composites materials, polymer dispersed liquid crystal (PDLC) films have been widely used in displays, smart windows, light shutters, etc. However, the commercialised PDLC film still requires a comparatively high voltage to maintain its transparent state, leading to huge power consumption and even a potential safety risk. In this regard, we proposed a ‘heat followed UV’ stepwise polymerisation strategy for preparing a kind of ELTS film with a low driving voltage (~20.7 V) through constructing a coexistent system of polymer dispersed and polymer stabilised liquid crystal (PD&SLC). In this new PD&SLC system, vertically orientated polymer networks were formed within LC domains to induce the vertical alignment of LC, thereby reducing the driving voltage. Also, the as-made PD&SLC film exhibited good flexibility due to the high content of polymer. Moreover, the effects of the liquid crystalline polymerisable monomers content on the polymer morphologies as well as the electro-optical properties of the as-made PD&SLC films were elaborately investigated.  相似文献   

9.
以偶氮聚合物光致表面起伏光栅为模板,制备聚二甲基硅氧烷(PDMS)弹性印章,再以可溶性聚酰亚胺(PI)为“墨水”,在石英玻璃上压印出具有规则起伏结构的PI薄膜.由此制备的PI薄膜显示出很好的使液晶分子定向排列的效果.此方法成本低、效率高,是一种实用的液晶定向层薄膜制备方法.  相似文献   

10.
Helical carbon and graphite films from helical poly(3,4‐ethylenedioxythiophene) (H‐PEDOT) films synthesized through electrochemical polymerization in a chiral nematic liquid‐crystal (N*‐LC) field are prepared. The microscope investigations showed that the H‐PEDOT film synthesized in the N*‐LC has large domains of one‐handed spiral morphology consisting of fibril bundles. The H‐PEDOT films exhibited distinct Cotton effects in circular dichroism spectra. The highly twisted N*‐LC with a helical pitch of smaller than 1 μm produced the H‐PEDOT film with a highly ordered morphology. The spiral morphologies with left‐ and right‐handed screws were observed for the carbon films prepared from the H‐PEDOT films at 800 °C and were well correlated with the textures and helical pitches of the N*‐LCs. The spiral morphologies of the precursors were also retained even in the graphite films prepared from the helical carbon films at 2600 °C.  相似文献   

11.
ABSTRACT

The properties of the thin films of liquid crystal (LC) molecules can be governed easily by external fields. The anisotropic structure of the LC molecules has a large impact on the electrical and optical properties of the film. The Langmuir monolayer (LM) of LC molecules at the air–water interface is known to exhibit a variety of surface phases which can be transferred onto a solid substrate using the Langmuir?Blodgett (LB) technique. Here, we have studied the LM and LB films of asymmetrically substituted bent-core LC molecules. The morphology of LB film of the molecules is found to be a controlling parameter for aligning bulk LC in the nematic phase. It was found that the LB films of the bent-core molecules possessing defects favour the planar orientation of nematic LC, whereas the LB films with fewer defects show homeotropic alignment. The defect in LB films may introduce splay or bend distortions in the nematic near the alignment layer which can govern the planar alignment of the bulk LC. The uniform layer of LB film facilitates the molecules of nematic to anchor vertically due to a strong van der Waals interaction between the aliphatic chains leading to a homeotropic alignment.  相似文献   

12.
The director configuration, state of liquid crystal (LC) phase aggregation, and the electooptic properties of thin polymer films of poly(methyl methacrylate) (PMMA) containing nematic liquid crystal have been studied. Measurements included scanning electron micrograph (SEM), polarized optical micrographs (POM), and transmittance response of the film with the applied electric AC voltage and frequency. Two types of PMMA with significantly different molecular weight (Mw) were used, and the effects of polymer molecular weight on morphology and electro-optic properties of the composite films were examined. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
Three novel techniques of polymer dispersed liquid crystal (PDLC) film preparation have been proposed to obtain/induce systematically varying manifold properties in a single device. These three techniques were used to prepare ‘wedge-shaped’, ‘multi-channelled’ and ‘grating type’ PDLC films. Arrangement and configuration of liquid crystal (LC) microstructures inside these PDLC films, which were conveniently divided into different zones, have been investigated using a polarising optical microscope (POM) and scanning electron microscope (SEM). POM images indicate a predominant bipolar structure in all zones of different types of PDLC films but with varying size and density. Further, the electro-optical (EO) properties of PDLC films for different zones have different morphological characteristics as indicated (observed) in POM and SEM images and were dependent on LC droplet shape, size and distribution. Also different zones show different absorbance/transmittance characteristics in the visible range. Thus, our study proposes a single device with manifold properties. Also, the desired properties can be obtained by selecting the suitable zone from the PDLC composite film.  相似文献   

14.
The molecular orientation of very thin films on solid substrates can be determined quantitatively by measuring the polarized infrared (IR) absorption spectra of samples as a function of angle of incidence. The quantitative molecular orientation is derived by fitting the incident angle dependence and the dichroic ratio with theoretical calculations. We applied this method to a technologically important system: liquid crystal (LC)/rubbed polyimide film. To understand the alignment mechanism of LC molecules in contact with rubbed polyimide films, we have quantitatively determined the molecular orientation of rubbed polyimide films and a surface LC layer in contact with a rubbed polyimide film. In this paper two relations are discussed: (1) correlation between the inclination angle of polyimide backbone structures in rubbed films and the pretilt angle of bulk LC in contact with them, and (2) relation among the molecular orientation of a rubbed polyimide film and those of surface and bulk LC layers in contact with it.  相似文献   

15.
Polymer dispersed liquid crystals (PDLCs) with different sizes of the LC droplets are prepared based on the ultraviolet (UV) light curable acrylate monomers/LCs composites to fabricate the optical diffuser films. To acquire light diffusers with high optical performance, the effects of the monomer structure and the UV light intensity on the micro-structure of the PDLC films are studied. Results show that the PDLC films could exhibit a strong light scattering at the premise of maintaining high transmittance in the visible region. As the LC droplets are spherically dispersed in the polymer networks, when the size of LC droplets is about 3.0 μm, the haze can reach 88.5% and the transmittance is nearly 90.0%, which can be used as a bottom diffuser film. While when the size of LC droplets is about 10.0 μm, the haze and transmittance are 39.2% and 90.2%, respectively; hence, it can be a good choice for a top diffuser film. With the advantages of simple preparation, roll-to-roll industrial production and tunable optical properties, it is supported that the films based on UV-cured PDLC films can be applied as outstanding optical diffuser films in the liquid crystal display industry.  相似文献   

16.
Polyhedral oligomeric silesquioxanes (POSS) with eight polyether substituents were mixed with the liquid crystal (LC) 4-octyloxy-4′-cyanobiphenyl and spread at the air/water interface. The surface pressure-area and surface potential-area isotherms were recorded for different weight ratios of both components. The obtained results showed that POSS molecules had beneficial influence on LC monolayer improving its stability and rigidity. Moreover, it was found that some LC–POSS mixtures collapse reversibly and form multilayer films on the top of LC monolayer. On the other hand, interfacial dilatational and shear rheology indicated decrease of elasticity of the films after mixing. Brewster angle microscopy revealed multilayer structure of the condensed film and formation of net-like structures in the expanded film. These films were successfully transferred on solid substrates using the Langmuir–Blodgett technique. The scanning electron microscopy images confirmed the film deposition and formation of networks by POSS–LC mixtures. These findings may be useful in the fabrication of electronic devices based on LCs.  相似文献   

17.
We demonstrate anisotropic optical films based on liquid crystalline polymer (LCP) using a capillary force lithography (CFL). The fabricated optical films can be used as both an optical component and a self-aligning capability of liquid crystal molecules introduced on the film. Additionally, HA or PA LC can be induced on same material by controlling the water repellency of LCP surface. Moreover, surface anchoring transitions could be controlled by variation of pattern sizes and surface treatment. In this point of view, one thin optical film can act both retarder and alignment layer and then shows good retardation, LC alignment, and transmittance at the same time.  相似文献   

18.
A polystyrene macro-iniferter was applied to control the alignment of liquid crystal molecules at the droplet wall of polymer dispersed liquid crystal (PDLC) films. The aspects of the alignment were monitored by observing the droplet in the PDLC film. With increasing the macro-iniferter polystyrene in the composition, the configuration of LC droplets changes from bipolar to radial. This is because the high concentration of the macro-iniferter polystyrene results in a small surface interaction between the LC and the polymer matrix, which favours the formation of radial configuration. The radial configuration was stable under our conditions. However, increasing the LC and the initiator concentrations resulted in the change from radial to bipolar.  相似文献   

19.
A series of poly(methyl methacrylate) derivatives containing polyhedral oligomeric silsesquioxane (POSS) groups (MCP#) were synthesised via free radical polymerisation (FRP) using methacryl isobutyl POSS (MA-POSS) and methyl methacrylate as monomers to investigate liquid crystal (LC) alignment property of these polymer films. The LC cells made from the films of the polymers having 100 mol% of MA-POSS units (MCP100) showed vertical LC alignment having a pretilt angle of about 90°. The vertical LC alignment behaviour on the MCP100 film was ascribed to the very hydrophobic MCP100 surface having the surface energy value smaller than about 23 mJ/m2 generated by the nonpolar bulky POSS group. Good electro-optical characteristics, such as voltage holding ratio (VHR) and residual DC voltage (R-DC), were observed for the LC cells fabricated using MCP100 as a LC alignment layer.  相似文献   

20.
《Liquid crystals》2001,28(3):473-475
The thermal stability of alignment of a nematic liquid crystal (LC) on three polyimide (PI) films exposed to linearly polarized light at 366 nm was investigated. Polarizing optical microscopy analysis indicates that the thermal stability of the LC alignment on the PI film without significant structural change was higher than that with obvious structural change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号