首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption of Fe(Ⅲ)ions from aqueous solution by chitosan alpha-ketoglutaric acid(KCTS)and hydroxamated chitosan alpha-ketoglutaric acid(HKCTS)was studied in a batch adsorption system.Experiments were carried out as function of pH,temperature,agitation rate and concentration of Fe(Ⅲ)ions.The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and isotherm constants were determined.The Langmuir model agrees very well with experimental data.The pseudo-first-order and second-order kinetic models were used to describe the kinetic data and the rate constants were evaluated.The dynamical data fit well with the second-order kinetic model.The pseudo second-order kinetic model was indicated with the activation energy of 19.61 and 7.98 KJ/mol for KCTS and HKCTS,respectively.It is suggested that the overall rate of Fe(Ⅲ)adsorption is likely to be controlled by the chemical process.Results also showed that novel chitosan derivatives(KCTS and HKCTS)were favorable adsorbents.  相似文献   

2.
The adsorption of Fe(Ⅲ)ions from aqueous solution by chitosan alpha-ketoglutaric acid(KCTS)and hydroxamated chitosan alpha-ketoglutaric acid(HKCTS)was studied in a batch adsorption system.Experiments were carried out as function of pH,temperature,agitation rate and concentration of Fe(Ⅲ)ions.The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and isotherm constants were determined.The Langmuir model agrees very well with experimental data.The pseudo-first-order and second-order kinetic models were used to describe the kinetic data and the rate constants were evaluated.The dynamical data fit well with the second-order kinetic model.The pseudo second-order kinetic model was indicated with the activation energy of 19.61 and 7.98 kJ/mol for KCTS and HKCTS,respectively.It is suggested that the overall rate of Fe(Ⅲ)adsorption is likely to be controlled by the chemical process.Results also showed that novel chitosan derivatives(KCTS and HKCTS)were favorable adsorbents.  相似文献   

3.
The chitosan derivatives containing antiradical fragments in the polymer side chain have been synthesized by interaction of the partially quaternized chitosan(QCH) with gallic acid (GA). The antioxidative activity of the chitosan derivatives — QCH-GA was investigated by thiobarbituric method. Introduction of GA fragment in amount of 2. 0 mass % in the structure of QCH resulted in appearance of pronounced antioxidative activity of the polymeric system contrary to initial chitosan for which this activity was equal to zero. It was found that QCH-GA was a markedly higher effective inhibitor in a peroxidase — catalyzed oxidation of the model amine than the low-molecular antioxidant — GA. Targetted chitosan modification resulted in a substantial raize of the polymeric antimutagenic (at γ-irradiation) efficiency, which for QCH-GA was equal to 92% in comparison with the protective effect of the initial chitosan — 42% (plant test-system, barley seeds, γ = 15 Gr).  相似文献   

4.
Chitosan derivatives, such as chitosan alpha-ketoglutaric acid (KCTS) and hydroxamated chitosan alpha-ketoglutaric acid (HKCTS), are prepared and their coordination behavior toward Ca(II) was studied. The adsorption isotherms were correlated by dc/dt?=??kcn at 20°C, 30°C, 40°C, 50°C, and 60°C. By linear correlation, the shapes of the isotherm curves were similar to the kinetic function of 1/c?=?kt and the rate equation was dc/dt?=??kc 2; the activation energies were 13.31 and 14.76?kJ?mol?1 for KCTS and HKCTS, respectively. The overall rate of Ca(II) adsorption is likely to be controlled by the chemical process. The coordination mechanism of chitosan derivatives with Ca(II) was studied by infrared and X-ray photoelectron spectroscopy. The results indicated that –NH– of KCTS was coordinated. Nitrogen of amino, oxygens of hydroxamic acid, and carbonyl in HKCTS coordinated with Ca(II).  相似文献   

5.
Chitosan is a well-known excellent adsorbent for a number of organics and metal ions, but its mechanical properties and specific gravity should be enhanced for practical operation. In this study, activated clay was added in chitosan slurry to prepare composite beads. The adsorption isotherms and kinetics of two organic acids (tannic acid, humic acid) and two dyes (methylene blue, reactive dye RR222) using composite beads, activated clay, and chitosan beads were compared. With composite beads as an adsorbent, all the isotherms were better fitted by the Freundlich equation. The adsorption capacities with composite beads were generally comparable to those with chitosan beads but much larger than those with activated clay. The pseudo-first-order and pseudo-second-order equations were then screened to describe the adsorption processes. It was shown that the adsorption of larger molecules such as tannic acid (MW, 1700 g mol(-1)), humic acid, and RR222 from water onto composite beads was better described by the pseudo-first-order kinetic model. The rate parameters of the intraparticle diffusion model for adsorption onto such adsorbents were also evaluated and compared to identify the adsorption mechanisms.  相似文献   

6.
For the first time, N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) was prepared through a fast, easy and efficient method with the assistance of microwave irradiation, and the quaternized chitosan was also degraded via the microwave irradiation. A comparative study was performed by using the conventional heating method to prepare HTCC. The structure and property of the quaternized chitosan obtained by these two methods were characterized by GPC, XRD, FTIR, NMR, TG and elemental analysis. It was shown that quaternized chitosan was successfully prepared within 50 min via microwave irradiation method, while a much longer time of 6–7 h was needed with the conventional heating method. The substitutions both occurred on the C2 position of chitosan with the two different methods, and their HTCC products had weight average similar molecular weight (Mw), structure and thermal stability. The HTCC prepared by the microwave irradiation method had a little lower degree of substitution (DS) than those prepared via conventional heating with the same mole ratio (6:1) of the intermediate to chitosan. The degradation study showed that the Mw of HTCC decreased rapidly from 4.6 × 105 to 1.1 × 105 in 1 h under microwave irradiation, while it only decreased from 4.6 × 105 to 2.1 × 105in 1 h through conventional heating degradation. These results revealed that microwave irradiation is a more efficient and environment-friendly way to obtain the water-soluble chitosan derivatives and their degraded products.  相似文献   

7.
Chitosan with excellent biodegradable and biocompatible characteristics has received attention as an oral drug delivery vehicle. A quaternized chitosan (i.e., N-diethylmethyl chitosan, DEMC) was prepared based on a modified two-step process via a 22 factorial design to optimize the preparative conditions. DEMC was fully characterized using FTIR and 1H-NMR spectroscopies. As calculated using NMR-based data, high degree of quaternization was achieved through the optimized two-step process. The highly quaternized biopolymeric derivative was subjected to microbial experiments. The antimicrobial activities of chitosan and DEMC against Escherchia coli were compared by calculation of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Our data indicates that although the antimicrobial activity of DEMC is higher than that of chitosan in acetic acid medium, the both compounds are pH dependent and an increase in concentration of acetic acid results in a significant decrease in both MIC and MBC.  相似文献   

8.
The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were fabricated by one-step electrospinning and ion-imprinting methods and their application as adsorbents for metal ions was also investigated.The resulting chitosan nanofiber mats were characterized by scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS)and thermal gravimetric analysis(TGA).The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were used as adsorbents for the removal of Pb(Ⅱ)ions from aqueous or acid solutions.The effects of p H values,contact time,content of crosslinker(glutaraldehyde)on Pb(Ⅱ)ions adsorption were studied.The results indicated that the Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats had the highest adsorption capacity of 110.0 mg/g at p H 7.The kinetic study demonstrated that the adsorption of Pb(Ⅱ)ions followed the pseudo-second-order model.The equilibrium isotherm data showed that the Langmuir model was the most suitable for predicting the adsorption isotherm of the studied system.The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats had good adsorption selectivity,which illustrates the equilibrium adsorption capacity in the order of Pb(Ⅱ)Cu(Ⅱ)Zn(Ⅱ)Cd(Ⅱ)Ni(Ⅱ).The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were stable and had good reuse ability.  相似文献   

9.
壳聚糖作为减肥药品的研究进展   总被引:6,自引:0,他引:6  
壳聚糖对于脂肪具有明显的吸附作用,并开始被应用于最新的减肥药物中。它可以吸附胆汁酸、脂肪和胆固醇形成絮凝物,不能被消化而被排出体外。将壳聚糖与其他具有减肥或可抑制其副作用的物质共同使用可提高其对油脂的吸附能力和减肥效果。另外,还可以通过对壳聚糖进行改性,使用其衍生物来提高吸附油脂的效率。本文介绍了近年来主要的复合壳聚糖和改性壳聚糖减肥商品,并提出制备可与油脂互溶的油溶性壳聚糖以期提高吸收效率。  相似文献   

10.
通过壳聚糖氧化裂解,制备了分子量为8000的水溶性壳聚糖,并通过烷基化反应合成了二乙氨乙基壳聚糖、二甲氨基(1-甲基)乙基壳聚糖及二乙基甲基铵乙基壳聚糖.在体外测定了水溶性壳聚糖及其衍生物对胆酸盐(牛磺胆酸钠和甘氨胆酸钠)的结合能力及其影响因素.结果表明,水溶性壳聚糖结合胆酸盐的能力主要取决于其阳离子化程度.修饰后的壳聚糖结合胆酸盐的能力增强,说明引入更多的胺基或铵基有利于对胆酸盐的结合.  相似文献   

11.
In this study, uniform-sized pH-sensitive quaternized chitosan microsphere was prepared by combining Shirasu porous glass (SPG) membrane emulsification technique and a novel thermal-gelation method. In this preparation process, the mixture of quaternized chitosan solution and alpha-beta-glycerophosphate (alpha-beta-GP) was used as water phase and dispersed in oil phase to form uniform W/O emulsion by SPG membrane emulsification technique. The droplets solidified into microspheres at 37 degrees C by thermal-gelation method. The whole process was simple and mild. The influence of process conditions on the property of prepared microspheres was investigated and the optimized preparation condition was obtained. As a result, the coefficient of variation (C.V.) of obtained microspheres diameters was below 15%. The obtained microsphere had porous structure and showed apparent pH-sensitivity. It dissolved rapidly in acid solution (pH 5) and kept stable in neutral solution (pH 7.4). The pH-sensitivity of microspheres also affected its drug release behavior. Bovine serum albumin (BSA) as a model drug was encapsulated in microspheres, and it was released rapidly in acid solution and slowly in neutral medium. The novel quaternized chitosan microspheres with pH-sensitivity can be used as drug delivery system in the biomedical field, such as tumor-targeted drug carrier.  相似文献   

12.
The radiolysis of antimutagens extracted from natural biopolymer chitosan was studied by the EPR method. It was shown that addition of gallic acid (2 mol %) to quaternized chitosan results in a 2.5-fold decrease in the radiation-chemical yield of radicals and a nearly complete inhibition of the formation of ion radicals. Gallic acid units likely play the role of a stabilizer that protects the polycation from radiation damage and, hence, the structure of the cationogenic units from changes, thereby improving the antimutagenic properties of the system.  相似文献   

13.
The cross-linked chitosan (CS) gels synthesized by using glutaraldehyde (GLA), epichlorohydrin (EC), and ethylene glycol diglycidyl ether (EGDE) as cross-linkers respectively were used to investigate the adsorption of U(VI) ions in an aqueous solution. The pure chitosan (PCS) and the cross-linked chitosan gels were characterized by FTIR and SEM analysis. The kinetic, thermodynamic adsorption and adsorption isotherms of U(VI) ions onto unmodified and modified cross-linked chitosan were studied in a batch adsorption experiments. The effect of pH, contact time and temperature on the adsorption capacity were also carried out. At the optimum pH, the maximum adsorbed amount of PCS, GLACS, ECCS and EGDECS were 483.05, 147.05, 344.83 and 67.56 mg/g, respectively. The uranium (VI) adsorption process of PCS and ECCS followed better with pseudo-second-order kinetic model, while GLACS and EGDECS followed pseudo-first-order kinetic model well. The results obtained from the equilibrium isotherms adsorption studied of U(VI) ions were analyzed in two adsorption models, namely, Langmuir and Freundlich isothms models, the results showed that the Langmuir isotherm had better conformity to the equilibrium data. The thermodynamic parameters such as enthalpy (ΔHo), entropy (ΔSo), and Gibbs free energy (ΔGo) showed that the adsorption process was both spontaneous and endothermic.  相似文献   

14.
New chitosan derivatives are synthesized by the reductive N‐alkylation reaction of chitosan with various aldehydes, such as 2,4‐dihydroxybenzaldehyde, cholesteryl 4‐formylbenzoate, and N‐dehydroabietyl‐4‐formylbenzamide. The palladium‐adsorption ability of the newly synthesized derivatives is found to be as good as that of chitosan. A blend of chitosan and other biodegradable polymers is also found to exhibit palladium‐adsorption ability. In comparison to the starting chitosan, the chitosan derivative having dehydroabietyl‐type side chains exhibited an improved solubility in methanol. The chitosan derivatives are successfully applied as plastic coating materials for electroless plating. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
The interpolyelectrolyte complex formation between chitosan and anionic polyacrylic derivatives, bearing sulfonic moieties, as well as the protein adsorption onto the chitosan/polyacrylic complexes were studied by surface plasmon resonance (SPR) optical biosensor. This unique technique allows a real time monitoring of different surface molecular interactions with very high sensitivity. The acrylic macromolecules are two families of copolymers of 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and, respectively, 2-hydroxyethylmethacrylate (HEMA) and N,N'-dimethylacrylamide (DMAA). The complexation process was evaluated through the SPR measurements resulting from the flowing of polyacrylic aqueous solution over the sensor previously coated with chitosan. The SPR was able to differentiate strong ionic bonds from other weak and reversible interactions. By means of the coated sensors (uncomplexed and the whole series of complexed chitosan), SPR cold be used for a simple "in vitro" protein adsorption analysis, by flowing aqueous solutions of albumin and fibrinogen. While both proteins were adsorbed on the uncomplexed chitosan, the complexed coatings exhibited different and very promising behaviors. In particular, they showed no adsorption or only selective adsorption of albumin.  相似文献   

16.
In this study, composite monoliths with porous structures were prepared using quaternized chitosan and diatom earth for protein separation. Quaternized chitosan (N-[(2-hydroxy-3-trimethylammonium)propyl] chitosan chloride) dissolved in water was mixed with diatom earth and crosslinked with glutaraldehyde under low-temperature conditions to form a cryogel. Interconnected porous monoliths were obtained after removing ice crystals from the cryogel. The monoliths adsorbed bovine serum albumin selectively from the solution mixture of bovine serum albumin and bovine ɤ-globulin, and bovine ɤ-globulin was recovered in the flow-through fraction. The adsorption selectivity was enhanced by changing the solution pH from 6.8 to 5.5. The adsorption of bovine serum albumin by the monolith was replicated at least five times following its washing with a buffer containing 400 mM NaCl and subsequent regeneration with a 10 mM acetate buffer. The composited monolith is a promising adsorbent for the removal of acidic proteins, such as serum albumin contamination in neutral proteins, for example, ɤ-globulins, in bioproduction processes.  相似文献   

17.
Gao Y  Oshita K  Lee KH  Oshima M  Motomizu S 《The Analyst》2002,127(12):1713-1719
Chelating resins, two kinds of iminodiacetate derivatives (IDA) of cross-linked chitosan (CCS) were synthesized and investigated for adsorption capacity, matrix elimination and collection/concentration of analytes by a column pretreatment in a multi-element ICP-MS determination method. The adsorption behavior of 54 elements at the 10 ng ml(-1) level on chitosan derivatives in a packed mini-column was systematically examined. Almost 30 kinds of metal ions were recovered quantitatively at pH 5 with CCS-HP/IDA (cross-linked chitosan possessing N-2-hydroxypropyl iminodiacetic acid groups) column. Compared with available chitosan-iminodiacetate resin, CHITOPEARL CI-03, the recovery of the metal ions such as Cu, Pb and La is satisfactory with CCS-IDA (cross-linked chitosan possessing N,N-iminodiacetic acid groups) and CCS-HP/IDA using 2 M nitric acid as an eluent, which may be attributed to the difference of cross-linking and macroporous structure. Compared with Chelex-100, the adsorption efficiency is in the order: Chelex-100 > CCS-IDA > CCS-HP/IDA, especially in the chelating ability for alkaline earth metals. The resin with a longer spacer (CCS-HP/IDA) showed higher adsorption selectivity between heavy metal ions and alkaline earth metals at pH < 7. The separation efficiency of the major matrix cations in seawater (Na. K, Mg, Ca) has also been investigated, and matrix interference was negligible even in a seawater sample at pH 5 with CCS-HP/IDA. The recoveries of Mn at pH 5 with CCS-HP/IDA or Chelex-100 were almost 100%. However, those of Mg with each resin were 4 or 98%, respectively. The adsorption capacities of synthesized CCS-HP/IDA for Cu(II), Pb(II) and La(III) were 0.90, 0.65 and 0.34 mmol g(-1), respectively. Therefore, the chelating chitosan resins developed are applicable to the pretreatment of trace amounts of elements in various kinds of water samples.  相似文献   

18.
The orotic acid (OT) salt of chitosan (CS), CS-OT, and that of a CS derivative, CP, were prepared, and the adsorption of primary or secondary bile acid was investigated. Calcium-induced alginate gel beads (Alg-Ca) containing CS-OT were also prepared and autoclaved, and the possibility of these beads to act as a vehicle for oral administration to prevent hyperlipidemia was investigated. When taurocholate (TCA) and glycocholate (GCA) were present together in the medium, CS-OT adsorbed identical amounts of both bile acids. This trend was seen in all CPs, although the capacity to adsorb bile acid was affected by the number and/or structure of the amino groups in the CP. On the other hand, taurodeoxycholate, a secondary bile acid was preferentially adsorbed over TCA and GCA. Alg-Ca containing CS-OT took up bile acids in a similar manner as CS-OT irrespective of the water content of the gel matrix. As all elements can be taken as a food, Alg-Ca containing CS-OT could serve as a useful dietary agent for the prevention of hyperlipidemia, which is a lifestyle-related disease.  相似文献   

19.
An S‐mandelic acid imprinted chitosan resin was synthesized by cross‐linking chitosan with glutaraldehyde in 2% acetic acid solution. S‐Mandelic acid imprinted chitosan resin was used to enantioselectively separate racemic mandelic acid in aqueous medium. When keeping the pH of sample solution (100 mM Tris‐H3PO4) at 3.5 and adsorption time at 40 min, the enantiomer excess of mandelic acid in supernatant was 78.8%. The adsorption capacities of S‐mandelic acid imprinted chitosan resin for S‐ and R‐mandelic acid were determined to be 29.5 and 2.03 mg/g, respectively. While the adsorption capacities of non‐imprinted cross‐linked chitosan for S‐ and R‐mandelic acid were 2.10 and 2.08 mg/g, respectively. The result suggests that the imprinted caves in S‐mandelic acid imprinted chitosan resin are highly matched with S‐mandelic acid molecule in space structure and spatial arrangement of action sites. Interestingly, the enantiomer excess value of mandelic acid in supernatant after adsorption of racemic mandelic acid by R‐mandelic acid imprinted cross‐linked chitosan was 25.4%. The higher enantiomer excess value by S‐mandelic acid imprinted chitosan resin suggests that the chiral carbons in chitosan and the imprinted caves in S‐mandelic acid imprinted chitosan resin combine to play roles for the enantioselectivity of S‐mandelic acid imprinted chitosan resin toward S‐mandelic acid. Furthermore, the excellent enantioselectivity of S‐mandelic acid imprinted chitosan resin toward S‐mandelic acid demonstrates that using chiral chitosan as functional monomer to prepare molecularly imprinted polymers has great potential in enantioseparation of chiral pharmaceuticals.  相似文献   

20.
交联壳聚糖多孔微球对染料的吸附平衡及吸附动力学分析   总被引:33,自引:0,他引:33  
研究了交联壳聚糖多孔微球对染料的吸附平衡规律,探讨了染料溶液在不同的初始浓度、pH值及不同吸附剂用量条件下吸附动力学规律及吸附动力学控制机理。结果表明,壳聚糖微球对染料的吸附规律可较好地符合Langmuir吸附等温式,吸附动力学模型可以用表观二级速率方程来描述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号