首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the contact behaviors of a nanoscopic stiff thin film bonded to a compliant substrate and derived an analytical solution for determining the elastic modulus of thin films. Microscopic contact deformations of the gold and polydopamine thin films (<200 nm) coated on polydimethylsiloxane elastomers were measured by indenting a soft tip and analyzed in the framework of the classical plate theory and Johnson-Kendall-Roberts (JKR) contact mechanics. The analysis of this thin film contact mechanics focused on the bending and stretching resistance of thin films and is fundamentally different from conventional indentation measurements where the focus is on the fracture and compression of the films. The analytical solution of the elastic modulus of nanoscopic thin films was validated experimentally using 50 and 100 nm gold thin films coated on polydimethylsiloxane elastomers. The technical application of this analysis was further demonstrated by measuring the elastic modulus of thin films of polydopamine, a recently discovered biomimetic universal coating material. Furthermore, the method presented here is able to quantify the contact behaviors of nanoscopic thin films, effectively providing fundamental design parameters, the elastic modulus, and the work of adhesion, crucial for transferring them effectively into practical applications.  相似文献   

2.
Antifouling coatings are used to improve the speed and energy efficiency of ships by preventing or- ganisms, such as barnacles and weed, building up on the underwater hull and helping the ships movement through the water. Typically, marine coatings are tributyltin self-polishing copolymer paints containing toxic molecules called biocides. They have been the most successful in combating bio- fouling on ships, but their widespread use has caused severe pollution in the marine ecosystem. The low surface energy marine coating is an entirely non-toxic alternative, which reduces the adhesion strength of marine organisms, facilitating their hydrodynamic removal at high speeds. In this paper, the novel low surface energy non-toxic marine antifouling coatings were prepared with modified acrylic resin, nano-SiO2, and other pigments. The effects of nano-SiO2 on the surface structure and elastic modulus of coating films have been studied, and the seawater test has been carried out in the Dalian Bay. The results showed that micro-nano layered structures on the coating films and the lowest surface energy and elastic modulus could be obtained when an appropriate mass ratio of resin, nano-SiO2, and other pigments in coatings approached. The seawater exposure test has shown that the lower the sur- face energy and elastic modulus of coatings are, the less the marine biofouling adheres on the coating films.  相似文献   

3.
Hard elastic samples of linear polyethylene were prepared by melt extrusion at a high velocity of the melt flow and by subsequent annealing of crystallized samples. The deformation behavior of hard elastic samples obtained by annealing of as-spun samples at different temperatures has been analyzed at uniaxial extension resulting in formation of porous structure. Mechanical properties of microporous films in the longitudinal and transverse directions have been investigated. Composite systems consisting of a microporous polyethylene film and a thin layer of an electroconducting polymer have been prepared. Mechanical properties of composite systems, such as elastic modulus, tensile strength, and break elongation, have been compared with the properties of polyethylene substrates.  相似文献   

4.
The development and first applications of a new ultrasonic reflection method for determination of the viscoelastic properties of polymer films are reported. The complex shear modulus G* and the complex longitudinal modulus L*=K*+ 4/3 G* of the samples are derived from the measured complex reflection coefficients of an ultrasonic shear and longitudinal wave, respectively. From G and L the Young's modulus E, the compression modulus K and the Poisson ratio ν can be calculated for isotropic materials. A LiNbO3-transducer (10° rotated Y-cut) is used for the simultaneous excitation of longitudinal and transversal ultrasonic waves, which allows to determine different elastic constants by one measurement. A measuring cell with normal incidence of the ultrasonic waves is used. The equipment has been applied to study the time dependence of the moduli during film formation from an aqueous polymer dispersion and the isothermal curing of an epoxy resin. Furthermore, the temperature dependence of the elastic constants of a carbon-black filled rubber and during non-isothermal crystallization of a semi-crystalline polymer has been studied.  相似文献   

5.
Antifouling coatings are used to improve the speed and energy efficiency of ships by preventing organisms, such as barnacles and weed, building up on the underwater hull and helping the ships movement through the water. Typically, marine coatings are tributyltin self-polishing copolymer paints containing toxic molecules called biocides. They have been the most successful in combating biofouling on ships, but their widespread use has caused severe pollution in the marine ecosystem. The low surface energy marine coating is an entirely non-toxic alternative, which reduces the adhesion strength of marine organisms, facilitating their hydrodynamic removal at high speeds. In this paper, the novel low surface energy non-toxic marine antifouling coatings were prepared with modified acrylic resin, nano-SiO2, and other pigments. The effects of nano-SiO2 on the surface structure and elastic modulus of coating films have been studied, and the seawater test has been carried out in the Dalian Bay. The results showed that micro-nano layered structures on the coating films and the lowest surface energy and elastic modulus could be obtained when an appropriate mass ratio of resin, nano-SiO2, and other pigments in coatings approached. The seawater exposure test has shown that the lower the surface energy and elastic modulus of coatings are, the less the marine biofouling adheres on the coating films. Supported by High-Tech Research and Development Program of China (Grant No. 2004AA001520)  相似文献   

6.
Films were prepared via solvent casting from different deacetylated and depolymerized chitosans obtained from β‐chitin. The linear viscoelastic behavior of the chitosan films was studied with uniaxial tensile stress–relaxation tests. All stress–relaxation profiles exhibited an asymptotically decaying trend, with a residual value different from zero, thus pointing out a solid‐like, viscoelastic behavior. The decay of the tensile modulus with time was phenomenologically described by a generalized Maxwell model consisting of three exponential functions and an equilibrium elastic modulus. Films prepared from chitosans with higher molecular weights showed higher residual elastic moduli and longer relaxation times. Within the range of the degrees of acetylation analyzed (0–27%), chitosans with the lowest and highest degrees of acetylation exhibited more pronounced solid‐like character. This behavior is explained on the basis of a complex balance between steric effects, types of intermolecular interactions, and aggregation of the chitosan samples. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1907–1915, 2007  相似文献   

7.
Cast film composites have been prepared from aqueous polymer solutions containing nanometric silica particles. The polymers were polyvinyl alcohol (PVA), hydroxypropylmethylcellulose (HPMC) and a blend of PVA‐HPMC polymers. In the aqueous dispersions, the polymer–silica interactions were studied through adsorption isotherms. These experiments indicated that HPMC has a high affinity for silica surfaces, and can adsorb at high coverage; conversely, low affinity and low coverage were found in the case of PVA. In the films, the organization of silica particles was investigated through transmission electron microscopy (TEM) and small‐angle neutron scattering (SANS). Both methods showed that the silica particles were well‐dispersed in the HPMC films and aggregated in the PVA films. The mechanical properties of the composite films were evaluated using tensile strength measurements. Both polymers were solid materials, with a high‐elastic modulus (65 MPa for HPMC and 291 for PVA) and a low‐maximum elongation at break (0.15 mm for HPMC and 4.12 mm for PVA). In HPMC films, the presence of silica particles led to an increase in the modulus and a decrease in the stress at break. In PVA films, the modulus decreased but the stress at break increased upon adding silica. Accordingly, the polymer/silica interaction can be used to tune the mechanical properties of such composite films. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1134–1146, 2006  相似文献   

8.
Poly(aryl-ether-ether-ketone) (PEEK) films and rods have been solid-state extruded at 154 and 310°C, respectively. The crystal orientation functions, melting behavior, density, and tensile properties of the drawn PEEK films (EDR ≤ 3.7) and rods (EDR ≤ 5.5) have been measured. As extrusion draw ratio (EDR) was increased, the c-axis orientation function, melting temperature, and tensile modulus and strength increased. Moduli up to 6.5 GPa and the strengths up to 600 MPa, 3 and 6 times the values of undrawn films, respectively, were obtained for the drawn films. The thermal expansivities along (α) and perpendicular (α?) to the draw direction of PEEK rods were measured from ?40 to +10°C. As EDR was increased, α? increased, but α decreased. At EDRs of 3.8 and 5.5, α even exhibited negative values (about ?5 × 10?6°C?1), probably due to reversible contraction of elongated tie-molecules.  相似文献   

9.
Adsorbed films of milk proteins at the oil-water (O-W) interface have been imaged using a Brewster angle microscope (BAM). Special adaptations were made to the BAM to allow imaging of the O-W interface and to enable in situ heating and cooling of the adsorbed films. The proteins beta-lactoglobulin (beta-L) and alphas1-, beta-, and kappa-casein were studied over a range of bulk protein concentrations (Cb) and surface ages at pH 7 and for beta-L at pH 5 also. The adsorbed films were subjected to incremental compression and expansion cycles, such that the film area was typically varied between 125% and 50% of the original film area, and the resulting film structure was recorded via the BAM at 25.0 degrees C. Structuring of beta-L films (the formation of ridges and cracks) was more pronounced at pH 5 (closer to the protein's isoelectric point) than at pH 7 and for longer adsorption times and/or higher Cb. Structuring was also much more apparent at the O-W interface than at the A-W interface on compression/expansion/aging, especially at pH 7. After heating beta-L films adsorbed at low Cb (0.005 wt %) to 80 or 90 degrees C, an even greater degree of film structuring was evident, but beta-L films adsorbed at higher Cb (> or =0.05 wt %) showed fewer but larger fractures. The adsorbed caseins showed little evidence of such features, either before or after heating, apart from slight structuring for the heated films of alphas1- and kappa-casein films after 1 day. Changes in the dilatational elastic modulus of the beta-L films (Cb = 0.005 wt %) were correlated with the variations in the structural integrity of the films as observed via the BAM technique. In particular, there was a marked increase in the elastic modulus on heating, while the cycle of compression and expansion appeared to result in a net film weakening overall. The beta-L films adsorbed at higher Cb (> or =0.05 wt %) behaved as if an even stronger elastic skin completely covered the interface. The overall conclusion is that interfacial protein films subjected to these types of thermal and mechanical perturbations, which are typical of those that occur in food colloid processing, can become highly inhomogeneous, depending on the type of protein and the bulk solution conditions. This undoubtedly has implications for the stability of the corresponding emulsions and foams.  相似文献   

10.
Tissue engineering scaffolds should provide a suitable porous structure and proper mechanical strength, which is beneficial for the delivery of growth factor and regulation of cells. In this study, the open‐porous polycaprolactone (PCL)/poly (lactic acid) (PLA) tissue engineering scaffolds with suitable porous scale were fabricated using different ratios of PCL/PLA blends. At the same time, the relationship of foaming process, morphology, and mechanical behavior in the optimized batch microcellular foaming process were studied based on the single‐factor experiment method. The porous structures and mechanical strength of the scaffolds were optimized by adjusting foaming parameters, including the temperature, pressure, and CO2 dissolution time. The results indicated that the foaming parameters influence the cell morphology, further determine the mechanical behavior of PCL/PLA blends. When the PCL content is high, with the increase of temperature and time, the cell diameter and the elastic modulus increased, and the tensile strength and elastic modulus increased with the increase of the average cell size, and decreased as the increase of the cell density. While when the PLA content was high, the cell diameter showed the same trend, and the tensile strength and elastic modulus were higher, and the elongation at break was lower, and tensile strength and elastic modulus decreased with the increase of the average cell size and increased with the increase of cell density. This work successfully fabricated optimized porous PCL/PLA scaffolds with excellent suitable mechanical properties, pore sizes, and high interconnectivity, indicating the effectiveness of modulating the batch foaming process parameters.  相似文献   

11.
12.
A nonlinear Langevin equation (NLE) theory for the translational center-of-mass dynamics of hard nonspherical objects has been applied to isotropic fluids of rigid rods. The ideal kinetic glass transition volume fraction is predicted to be a monotonically decreasing function beyond an aspect ratio of two. The functional form of the decrease is weaker than the inverse aspect ratio. Vitrification occurs at lower volume fractions for corrugated tangent bead rods compared to their smooth spherocylinder analogs. The ideal glass transition signals a crossover to activated dynamics, which is estimated to be observable before the nematic phase boundary is encountered if the aspect ratio is less than roughly 25. Calculations of the glassy elastic shear modulus and absolute yield stress reveal a roughly exponential growth with volume fraction. The dependence of entropic barriers and mean barrier hopping times on concentration for rods of variable aspect ratios can be collapsed quite well based on a difference volume fraction variable that quantifies the distance from the ideal glass boundary. Full numerical solution of the NLE theory via stochastic trajectory simulation was performed for tangent bead rods, and the results were compared to their hard sphere analogs. With increasing shape anisotropy the characteristic length scales of the nonequilibrium free energy increase and the magnitude of the localization well and entropic barrier curvatures decreases. These changes result in a significant aspect ratio dependence of dynamical properties and time correlation functions including weaker intermediate time subdiffusive transport, stronger two-step decay of the incoherent dynamic structure factor, longer mean alpha relaxation time, and stronger wavevector-dependent decoupling of relaxation times and the self-diffusion constant. The theoretical results are potentially testable via computer simulation, confocal microscopy, and dynamic light scattering.  相似文献   

13.
Bacterial cellulose (BC) films with different porosities have been developed in order to obtain improved mechanical properties. After 13 days of incubation of Gluconobacter xylinum bacteria in static culture, BC pellicles have been set. BC films have been compression molded after water dispersion of BC pellicles and filtration by applying different pressures (10, 50, and 100 MPa) to obtain films with different porosities. Tensile behavior has been analyzed in order to discuss the microstructure–property relationships. Compression pressure has been found as an important parameter to control the final mechanical properties of BC films where slightly enhanced tensile strength and deformation at break are obtained increasing mold compression pressure, while modulus also increases following a nearly linear dependence upon film porosity. This behavior is related to the higher densification by increasing mold compression pressure that reduces the interfibrillar space, thus increasing the possibility of interfibrillar bonding zones. Network theories have been applied to relate film elastic properties with individual nanofiber properties.  相似文献   

14.
Column buckling mechanics were examined as a technique to determine the modulus of glassy polymer films that fail at very low strains in tension. As an alternative modulus measurement technique, free‐standing column buckling (FSCB) mechanics were investigated here. Given the film geometries and the critical buckling load, classical relationships can be used to determine the modulus. Several polymeric materials were tested and compared to uniaxial tensile values to determine the robustness and validity of the technique. Film geometries were varied from 4 to 18 mm in width and from 15 to 60 mm in length. The films were compressed in plane until buckling occurred and the critical buckling load was measured for each geometry. The critical buckling load increased as film width increased and decreased as film length increased, while the thickness was held constant for each material. For polyethylene terephthalate films, the elastic modulus was determined to be 3.06 ± 0.58 GPa. This FSCB‐determined modulus was compared to the elastic modulus obtained by tensile testing (3.54 ± 0.2 GPa). The modulus measurement technique presented here has the potential to be used experimentally to determine the elastic modulus of glassy polymer films that perform poorly in tension. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 15–20  相似文献   

15.
The shear thinning and shear thickening rheological properties of PCC/PEG suspension were investigated with the increase of oscillatory amplitude stress at different constant frequencies. The results show that the complex viscosity was initially independent of stress amplitude and obvious shear thinning occurred, then dramatic shear thickening took place after reaching the minimum viscosity. Typically, in a constant frequency of 5 rad/s, the elastic modulus, viscous modulus, and tanδ (δ is the out-of-phase angle) vs. the stress amplitude was investigated. It is found that the elastic modulus initially appeared to be independent of stress amplitude and then exhibited a rapid decrease, but the viscous modulus was independent of amplitude stress at lower amplitude stress. After reaching the minimum value the viscous modulus showed a rapid increase. On the other hand, tanδ increased from 0.6 to 92, which indicates that the transition from elastic to viscous had taken place and tanδ showed a steep increase when shear thickening occurred. Lissajous plots are shown for the dissipated energy vs. different maximum stress amplitude in the shear thinning and shear thickening regions. The relationship of dissipated energy vs. maximum stress amplitude was determined, which follows a power law. In the shear thinning region the exponent was 1.91, but it steeply increases to 3.97 in the shear thickening region.  相似文献   

16.
The mechanical properties of hydrogen-bonded layer-by-layer (LbL) microcapsule shells constructed from tannic acid (TA) and poly(vinylpyrrolidone) (PVPON) components have been studied in both the dry and swollen states. In the dry state, the value of the elastic modulus was measured to be within 0.6-0.7 GPa, which is lower than the typical elastic modulus for electrostatically assembled LbL shells. Threefold swelling of the LbL shells in water results in a significant reduction of the elastic modulus to values well below 1 MPa, which is typical value seen for highly compliant gel materials. The increase of the molecular weight of the PVPON component from 55 to 1300 kDa promotes chain entanglements and causes a stiffening of the LbL shells with a more than 2-fold increase in elastic modulus value. Moreover, adding a polyethylenimine prime layer to the LbL shell affects the growth of hydrogen-bonded multilayers which consequently results in dramatically stiffer, thicker, and rougher LbL shells with the elastic modulus increasing by more than an order of magnitude, up to 4.3 MPa. An alternation of the elastic properties of very compliant hydrogen-bonded shells by variation of molecular weight is a characteristic feature of weakly bonded LbL shells. Such an ability to alter the elastic modulus in a wide range is critically important for the design of highly compliant microcapsules with tunable mechanical stability, loading ability, and permeability.  相似文献   

17.
This work aims to investigate the effects of experimental variables on nano-indentation measurements on PMMA. A wide range of conditions, including different load levels, loading rates, holding times and unloading rates were employed to examine the sensitivity of nano-indentation measurements to the selected experimental variables. The test results indicate that the elastic modulus and hardness of PMMA are approximately load-level invariant. However, they are sensitive to the loading rate, holding time and unloading rate. Both elastic modulus and hardness increase with increasing loading rate, while increasing holding time leads to decreasing elastic modulus and hardness. Moreover, the unloading rate has almost no obvious effect on the hardness of PMMA, while the opposite is true for elastic modulus.  相似文献   

18.
The temporal development of the modulus of elasticity and its profile were studied in water-borne alkyd coatings during the drying process of the coating films. Values of the Young’s moduli of elasticity of free coating films were measured using tensile tests. Since the elastic modulus is related to cross-link density, the values of the moduli give information on the advancement of the drying process. A mathematical model was developed to predict the degree of effective cross-linking and the mechanical behaviour of the drying coating films with different thicknesses. This model is based on trends observed by confocal Raman microspectroscopy, which exhibit the profile of the consumption of double bonds and thus can be used to monitor the development of cross-link density as a function of depth from the film surface. The average values of the Young’s measured moduli were successfully described by the numerical model as a function of drying time.  相似文献   

19.
For thin elastic films of crosslinked polydimethylsiloxane (PDMS), the tensile modulus was found to be an increasing function of reciprocal thickness over the whole range of elongations. PDMS films between 0.052 and 0.018 mm were investigated. With decreasing film thickness, surface properties may be expected to increasingly contribute to the measured modulus. For small elongations, surface tension is expected to have no effect or to decrease the measured modulus compared with that of a bulk sample. If a surface layer with a modulus greater than that of the bulk modulus is assumed to exist, then the observed increase in modulus with decreasing film thickness can be explained. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2391–2396, 1997  相似文献   

20.
The initial and quasi-equilibrium values of relaxation modulus, the mean statistic retardation and relaxation times, and the parameters of retardation and relaxation time distributions have been estimated from the corresponding creep, elastic relaxation, and stress relaxation curves. Changes in the above characteristics with an increase in the draw ratio are analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号