首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Crystalline triazine-based covalent organic frameworks (COFs) are aromatic nitrogen-rich porous materials. COFs typically show high thermal/chemical stability, and are promising for energy applications, but often require harsh synthesis conditions and suffer from low crystallinity. In this work, we propose an environmentally friendly route for the synthesis of crystalline COFs from CO2 molecules as a precursor. The mass ratio of CO2 conversion into COFs formula unit reaches 46.3 %. The synthesis consists of two steps; preparation of 1,4-piperazinedicarboxaldehyde from CO2 and piperazine, and condensation of the dicarboxaldehyde and melamine to construct the framework. The CO2-derived COF has a 3-fold interpenetrated structure of 2D layers determined by powder X-ray diffraction, high-resolution transmission electron microscopy, and select-area electron diffraction. The structure shows a high Brunauer–Emmett–Teller surface area of 945 m2 g−1 and high stability against strong acid (6 M HCl), base (6 M NaOH), and boiling water over 24 hours. Post-modification of the framework with oxone has been demonstrated to modulate hydrophilicity, and it exhibits proton conductivity of 2.5×10−2 S cm−1 at 85 °C, 95 % of relative humidity.  相似文献   

2.
Nitrogen-heterocycle-based covalent organic frameworks (COFs) are considered promising candidates for the overall photosynthesis of hydrogen peroxide (H2O2). However, the effects of the relative nitrogen locations remain obscured and photocatalytic performances of COFs need to be further improved. Herein, a collection of COFs functionalized by various diazines including pyridazine, pyrimidine, and pyrazine have been judiciously designed and synthesized for photogeneration of H2O2 without sacrificial agents. Compared with pyrimidine and pyrazine, pyridazine embedded in TpDz tends to stabilize endoperoxide intermediate species, leading toward the more efficient direct 2e- oxygen reduction reaction (ORR) pathway. Benefiting from the effective electron-hole separation, low charge transfer resistance, and high-efficiency ORR pathway, an excellent production rate of 7327 μmol g−1 h−1 and a solar-to-chemical conversion (SCC) value of 0.62 % has been achieved by TpDz, which ranks one of the best COF-based photocatalysts. This work might shed fresh light on the rational design of functional COFs targeting photocatalysts in H2O2 production.  相似文献   

3.
Two-dimensional (2D) imine-based covalent organic frameworks (COFs) hold potential for photocatalytic CO2 reduction. However, high energy barrier of imine linkage impede the in-plane photoelectron transfer process, resulting in inadequate efficiency of CO2 photoreduction. Herein, we present a dimensionality induced local electronic modulation strategy through the construction of one-dimensional (1D) pyrene-based covalent organic frameworks (PyTTA-COF). The dual-chain-like edge architectures of 1D PyTTA-COF enable the stabilization of aromatic backbones, thus reducing energy loss during exciton dissociation and thermal relaxation, which provides energetic photoelectron to traverse the energy barrier of imine linkages. As a result, the 1D PyTTA-COF exhibits significantly enhanced CO2 photoreduction activity under visible-light irradiation when coordinated with metal cobalt ion, yielding a remarkable CO evolution of 1003 μmol g−1 over an 8-hour period, which surpasses that of the corresponding 2D counterpart by a factor of 59. These findings present a valuable approach to address in-plane charge transfer limitations in imine-based COFs.  相似文献   

4.
The polarity of a semiconducting molecule affects its intrinsic photophysical properties, which can be tuned by varying the molecular geometry. Herein, we developed a D3h-symmetric tricyanomesitylene as a new monomer which could be reticulated into a vinylene-linked covalent organic framework (g-C54N6-COF) via Knoevenagel condensation with another D3h-symmetric monomer 2,4,6-tris(4′-formyl-biphenyl-4-yl)-1,3,5-triazine. Replacing tricyanomesitylene with a C2v-symmetric 3,5-dicyano-2,4,6-trimethylpyridine gave a less-symmetric vinylene-linked COF (g-C52N6-COF). The octupolar conjugated characters of g-C54N6-COF were reflected in its scarce solvatochromic effects either in ground or excited states, and endowed it with more promising semiconducting behavior as compared with g-C52N6-COF, such as enhanced light-harvesting and excellent photo-induced charge generation and separation. Along with the matched energy level, g-C54N6-COF enabled the two-half reactions of photocatalytic water splitting with an average O2 evolution rate of 51.0 μmol h−1 g−1 and H2 evolution rate of 2518.9 μmol h−1 g−1. Such values are among the highest of state-of-the-art COF photocatalysts.  相似文献   

5.
A strategy to covalently connect crystalline covalent organic frameworks (COFs) with semiconductors to create stable organic–inorganic Z-scheme heterojunctions for artificial photosynthesis is presented. A series of COF–semiconductor Z-scheme photocatalysts combining water-oxidation semiconductors (TiO2, Bi2WO6, and α-Fe2O3) with CO2 reduction COFs (COF-316/318) was synthesized and exhibited high photocatalytic CO2-to-CO conversion efficiencies (up to 69.67 μmol g−1 h−1), with H2O as the electron donor in the gas–solid CO2 reduction, without additional photosensitizers and sacrificial agents. This is the first report of covalently bonded COF/inorganic-semiconductor systems utilizing the Z-scheme applied for artificial photosynthesis. Experiments and calculations confirmed efficient semiconductor-to-COF electron transfer by covalent coupling, resulting in electron accumulation in the cyano/pyridine moieties of the COF for CO2 reduction and holes in the semiconductor for H2O oxidation, thus mimicking natural photosynthesis.  相似文献   

6.
H2O2 photosynthesis coupled with biomass valorization can not only maximize the energy utilization but also realize the production of value-added products. Here, a series of COFs (i.e. Cu3-BT-COF, Cu3-pT-COF and TFP-BT-COF) with regulated redox molecular junctions have been prepared to study H2O2 photosynthesis coupled with furfuryl alcohol (FFA) photo-oxidation to furoic acid (FA). The FA generation efficiency of Cu3-BT-COF was found to be 575 mM g−1 (conversion ≈100 % and selectivity >99 %) and the H2O2 production rate can reach up to 187 000 μM g−1, which is much higher than Cu3-pT-COF, TFP-BT-COF and its monomers. As shown by theoretical calculations, the covalent coupling of the Cu cluster and the thiazole group can promote charge transfer, substrate activation and FFA dehydrogenation, thus boosting both the kinetics of H2O2 production and FFA photo-oxidation to increase the efficiency. This is the first report about COFs for H2O2 photosynthesis coupled with biomass valorization, which might facilitate the exploration of porous-crystalline catalysts in this field.  相似文献   

7.
Anchoring transition metal (TM) atoms on suitable substrates to form single-atom catalysts (SACs) is a novel approach to constructing electrocatalysts. Graphdiyne with sp−sp2 hybridized carbon atoms and uniformly distributed pores have been considered as a potential carbon material for supporting metal atoms in a variety of catalytic processes. Herein, density functional theory (DFT) calculations were performed to study the single TM atom anchoring on graphdiyne (TM1−GDY, TM=Sc, Ti, V, Cr, Mn, Co and Cu) as the catalysts for CO2 reduction. After anchoring metal atoms on GDY, the catalytic activity of TM1−GDY (TM=Mn, Co and Cu) for CO2 reduction reaction (CO2RR) are significantly improved comparing with the pristine GDY. Among the studied TM1−GDY, Cu1−GDY shows excellent electrocatalytic activity for CO2 reduction for which the product is HCOOH and the limiting potential (UL) is −0.16 V. Mn1−GDY and Co1−GDY exhibit superior catalytic selectivity for CO2 reduction to CH4 with UL of −0.62 and −0.34 V, respectively. The hydrogen evolution reaction (HER) by TM1−GDY (TM=Mn, Co and Cu) occurs on carbon atoms, while the active sites of CO2RR are the transition metal atoms . The present work is expected to provide a solid theoretical basis for CO2 conversion into valuable hydrocarbons.  相似文献   

8.
Carbon capture and storage is an important strategy for stabilizing the increasing concentration of atmospheric CO2 and the global temperature. A possible approach toward reversing this trend and decreasing the atmospheric CO2 concentration is to remove the CO2 directly from air (direct air capture). Herein we report a simple aqueous guanidine sorbent that captures CO2 from ambient air and binds it as a crystalline carbonate salt by guanidinium hydrogen bonding. The resulting solid has very low aqueous solubility (K sp=1.0(4)×10−8), which facilitates its separation from solution by filtration. The bound CO2 can be released by relatively mild heating of the crystals at 80–120 °C, which regenerates the guanidine sorbent quantitatively. Thus, this crystallization‐based approach to CO2 separation from air requires minimal energy and chemical input, and offers the prospect for low‐cost direct air capture technologies.  相似文献   

9.
Synthesis of functional 3D COFs with irreversible bond is challenging. Herein, 3D imide-bonded COFs were constructed via the imidization reaction between phthalocyanine-based tetraanhydride and 1,3,5,7-tetra(4-aminophenyl)adamantine. These two 3D COFs are made up of interpenetrated pts networks according to powder X-ray diffraction and gas adsorption analyses. CoPc-PI-COF-3 doped with carbon black has been employed to fabricate the electrocatalytic cathode towards CO2 reduction reaction within KHCO3 aqueous solution, displaying the Faradaic efficiency of 88–96 % for the CO2-to-CO conversion at the voltage range of ca. ?0.60 to ?1.00 V (vs. RHE). In particular, the 3D porous structure of CoPc-PI-COF-3 enables the active electrocatalytic centers occupying 32.7 % of total cobalt-phthalocyanine subunits, thus giving a large current density (jCO) of ?31.7 mA cm?2 at ?0.90 V. These two parameters are significantly improved than the excellent 2D COF analogue (CoPc-PI-COF-1, 5.1 % and ?21.2 mA cm?2).  相似文献   

10.
Solar-driven CO2 reduction reaction (CO2RR) is largely constrained by the sluggish mass transfer and fast combination of photogenerated charge carriers. Herein, we find that the photocatalytic CO2RR efficiency at the abundant gas-liquid interface provided by microdroplets is two orders of magnitude higher than that of the corresponding bulk phase reaction. Even in the absence of sacrificial agents, the production rates of HCOOH over WO3 ⋅ 0.33H2O mediated by microdroplets reaches 2536 μmol h−1 g−1 (vs. 13 μmol h−1 g−1 in bulk phase), which is significantly superior to the previously reported photocatalytic CO2RR in bulk phase reaction condition. Beyond the efficient delivery of CO2 to photocatalyst surfaces within microdroplets, we reveal that the strong electric field at the gas-liquid interface of microdroplets essentially promotes the separation of photogenerated electron-hole pairs. This study provides a deep understanding of ultrafast reaction kinetics promoted by the gas-liquid interface of microdroplets and a novel way of addressing the low efficiency of photocatalytic CO2 reduction to fuel.  相似文献   

11.
Capping ligands are indispensable for the preparation of metal-halide-perovskite (MHP) nanocrystals (NCs) with good stability; however, the long alkyl-chain capping ligands in conventional MHP NCs will be unfavorable for CO2 adsorption and hinder the efficient carrier separation on the surface of MHP NCs, leading to inferior catalytic activity in artificial photosynthesis. Herein, CsPbBr3 nanocrystals with short-chain glycine as ligand are constructed through a facile ligand-exchange strategy. Owing to the reduced hindrance of glycine and the presence of the amine group in glycine, the photogenerated carrier separation and CO2 uptake capacity are noticeably improved without compromising the stability of the MHP NCs. The CsPbBr3 nanocrystals with glycine ligands exhibit a significantly increased yield of 27.7 μmol g−1 h−1 for photocatalytic CO2-to-CO conversion without any organic sacrificial reagents, which is over five times higher than that of control CsPbBr3 NCs with conventional long alkyl-chain capping ligands.  相似文献   

12.
Electrochemical reactors that electrolytically convert CO2 into higher-value chemicals and fuels often pass a concentrated hydroxide electrolyte across the cathode. This strongly alkaline medium converts the majority of CO2 into unreactive HCO3 and CO32− byproducts rather than into CO2 reduction reaction (CO2RR) products. The electrolysis of CO (instead of CO2) does not suffer from this undesirable reaction chemistry because CO does not react with OH. Moreover, CO can be more readily reduced into products containing two or more carbon atoms (i. e., C2+ products) compared to CO2. We demonstrate here that an electrocatalyst layer derived from copper phthalocyanine ( CuPc ) mediates this conversion effectively in a flow cell. This catalyst achieved a 25 % higher selectivity for acetate formation at 200 mA/cm2 than a known state-of-art oxide-derived Cu catalyst tested in the same flow cell. A gas diffusion electrode coated with CuPc electrolyzed CO into C2+ products at high rates of product formation (i. e., current densities ≥200 mA/cm2), and at high faradaic efficiencies for C2+ production (FEC2+; >70 % at 200 mA/cm2). While operando Raman spectroscopy did not reveal evidence of structural changes to the copper molecular complex, X-ray photoelectron spectroscopy suggests that the catalyst undergoes conversion to a metallic copper species during catalysis. Notwithstanding, the ligand environment about the metal still impacts catalysis, which we demonstrated through the study of a homologous CuPc bearing ethoxy substituents. These findings reveal new strategies for using metal complexes for the formation of carbon-neutral chemicals and fuels at industrially relevant conditions.  相似文献   

13.
2D covalent organic frameworks (COFs) are receiving ongoing attention in semiconductor photocatalysis. Herein, we present a photocatalytic selective chemical transformation by combining sp2 carbon‐conjugated porphyrin‐based covalent organic framework (Por‐sp2c‐COF) photocatalysis with TEMPO catalysis illuminated by 623 nm red light‐emitting diodes (LEDs). Highly selective conversion of amines into imines was swiftly afforded in minutes. Specifically, the π‐conjugation of porphyrin linker leads to extensive absorption of red light; the sp2 ?C=C? double bonds linkage ensures the stability of Por‐sp2c‐COF under high concentrations of amine. Most importantly, we found that crystalline framework of Por‐sp2c‐COF is pivotal for cooperative photocatalysis with (2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl (TEMPO). This work foreshadows that the outstanding hallmarks of COFs, particularly crystallinity, could be exploited to address energy and environmental challenges by cooperative photocatalysis.  相似文献   

14.
Developing new reactive pathway to activate inert C(sp3)−H bonds for valuable oxygenated products remains a challenge. We prepared a series of triazine conjugated organic polymers to photoactivate C−H into aldehyde/ketone via O2→H2O2→⋅OH→Cl⋅→Cl2. Experiment results showed Cl2 could successively activate C(sp3)−H more effectively than Cl⋅ to generate unstable dichlorinated intermediates, increasing the kinetic rate ratio of dichlorination to monochlorination by a factor of 2,000 and thus breaking traditional dichlorination kinetic constraints. These active intermediates were hydrolyzed into aldehydes or ketones easily, when compared with typical stable dichlorinated complexes, avoiding chlorinated by-product generation. Moreover, an integrated two-phase system in an acid solution strengthened the Cl2 mediated process and inhibited product overoxidation, where the conversion rate of toluene reached 16.94 mmol/g/h and the selectivity of benzaldehyde was 99.5 %. This work presents a facile and efficient approach for selective conversion of inert C(sp3)−H bonds using Cl2.  相似文献   

15.
Metal–organic framework-based materials are promising single-site catalysts for electrocatalytic nitrate (NO3) reduction to value-added ammonia (NH3) on account of well-defined structures and functional tunability but still lack a molecular-level understanding for designing the high-efficient catalysts. Here, we proposed a molecular engineering strategy to enhance electrochemical NO3-to-NH3 conversion by introducing the carbonyl groups into 1,2,4,5-tetraaminobenzene (BTA) based metal-organic polymer to precisely modulate the electronic state of metal centers. Due to the electron-withdrawing properties of the carbonyl group, metal centers can be converted to an electron-deficient state, fascinating the NO3 adsorption and promoting continuous hydrogenation reactions to produce NH3. Compared to CuBTA with a low NO3-to-NH3 conversion efficiency of 85.1 %, quinone group functionalization endows the resulting copper tetraminobenzoquinone (CuTABQ) distinguished performance with a much higher NH3 FE of 97.7 %. This molecular engineering strategy is also universal, as verified by the improved NO3-to-NH3 conversion performance on different metal centers, including Co and Ni. Furthermore, the assembled rechargeable Zn−NO3 battery based on CuTABQ cathode can deliver a high power density of 12.3 mW cm−2. This work provides advanced insights into the rational design of metal complex catalysts through the molecular-level regulation for NO3 electroreduction to value-added NH3.  相似文献   

16.
Phthalocyanines (PCs) are intriguing building blocks owing to their stability, physicochemical and catalytic properties. Although PC-based polymers have been reported before, many suffer from relatively low stability, crystallinity, and low surface areas. Utilizing a mixed-metal salt ionothermal approach, we report the synthesis of a series of metallophthalocyanine-based covalent organic frameworks (COFs) starting from 1,2,4,5-tetracyanobenzene and 2,3,6,7-tetracyanoanthracene to form the corresponding COFs named M-pPPCs and M-anPPCs, respectively. The obtained COFs followed the Irving–Williams series in their metal contents, surface areas, and pore volume and featured excellent CO2 uptake capacities up to 7.6 mmol g−1 at 273 K, 1.1 bar. We also investigated the growth of the Co-pPPC and Co-anPPC on a highly conductive carbon nanofiber and demonstrated their high catalytic activity in the electrochemical CO2 reduction, which showed Faradaic efficiencies towards CO up to 74 % at −0.64 V vs. RHE.  相似文献   

17.
Metal-free covalent organic frameworks (COFs) have been employed to catalyze the oxygen reduction reaction (ORR). To achieve high activity and selectivity, various building blocks containing heteroatoms and groups linked by imine bonds were used to create catalytic COFs. However, the roles of linkages of COFs in ORR have not been investigated. In this work, the catalytic linkage engineering has been employed to modulate the catalytic behaviors. To create single catalytic sites while avoiding other possible catalytic sites, we synthesized COFs from benzene units linked by various bonds, such as imine, amide, azine, and oxazole bonds. Among these COFs, the oxazole-linkage in COFs enables to catalyze the ORR with the highest activity, which achieved a half-wave potential of 0.75 V and a limited current density of 5.5 mA cm−2. Moreover, the oxazole-linked COF achieved a conversion frequency (TOF) value of 0.0133 S−1, which were 1.9, 1.3, and 7.4-times that of azine-, amide- and imine-COFs, respectively. The theoretical calculation showed that the carbon atoms in oxazole linkages facilitated the formation of OOH* and promoted protonation of O* to form the OH*, thus advancing the catalytic activity. This work guides us on which linkages in COFs are suitable for ORR.  相似文献   

18.
Small-pore zeolites such as chabazite (CHA) are excellent candidates for the selective separation of CO2; however, the current synthesis involves several steps and the use of organic structure-directing agent (OSDA), increasing their cost and energy requirements. We report the synthesis of small-pore zeolite crystals (aluminosilicate) with CHA-type framework structure by direct synthesis in a colloidal suspension containing a mixture of inorganic cations only (Na+, K+, and Cs+). The location of CO2 molecules in the host structure was revealed by 3D electron diffraction (3D ED). The high sorption capacity for CO2 (3.8 mmol g−1 at 121 kPa), structural stability and regenerability of the discreate CHA zeolite nanocrystals is maintained for 10 consecutive cycles without any visible degradation. The CHA zeolite (Si:Al=2) reaches an almost perfect CO2 storage capacity (8 CO2 per unit cell) and high selectivity (no CH4 was adsorbed).  相似文献   

19.
Metal–organic framework (MOF) nanosheets could serve as ideal building blocks of molecular sieve membranes owing to their structural diversity and minimized mass‐transfer barrier. To date, discovery of appropriate MOF nanosheets and facile fabrication of high performance MOF nanosheet‐based membranes remain as great challenges. A modified soft‐physical exfoliation method was used to disintegrate a lamellar amphiprotic MOF into nanosheets with a high aspect ratio. Consequently sub‐10 nm‐thick ultrathin membranes were successfully prepared, and these demonstrated a remarkable H2/CO2 separation performance, with a separation factor of up to 166 and H2 permeance of up to 8×10−7 mol m−2 s−1 Pa−1 at elevated testing temperatures owing to a well‐defined size‐exclusion effect. This nanosheet‐based membrane holds great promise as the next generation of ultrapermeable gas separation membrane.  相似文献   

20.
The separation of acetylene (C2H2) from carbon dioxide (CO2) is a very important but challenging task due to their similar molecular dimensions and physical properties. In terms of porous adsorbents for this separation, the CO2-selective porous materials are superior to the C2H2-selective ones because of the cost- and energy-efficiency but have been rarely achieved. Herein we report our unexpected discovery of the first hydrogen bonded organic framework (HOF) constructed from a simple organic linker 2,4,6-tri(1H-pyrazol-4-yl)pyridine (PYTPZ) (termed as HOF-FJU-88) as the highly CO2-selective porous material. HOF-FJU-88 is a two-dimensional HOFs with a pore pocket of about 7.6 Å. The activated HOF-FJU-88 takes up a high amount of CO2 (59.6 cm3 g−1) at ambient conditions with the record IAST selectivity of 1894. Its high performance for the CO2/C2H2 separation has been further confirmed through breakthrough experiments, in situ diffuse reflectance infrared spectroscopy and molecular simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号