首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The study explores the potential of cellulose nanocrystals (CNC), cellulose nanofibers (CNF) and chitin nanocrystals (ChNC) isolated from bioresidues to remove silver ions from contaminated water. Zeta sizer studies showed negatively charged surfaces for CNC and CNF isolated from cellulose sludge in the acidic and alkaline pHs, whereas ChNC isolated from crab shell residue showed either positive or negative charges depending on pH conditions. Model water containing silver ions showed a decrease in Ag+ ion concentration (measured by inductively coupled plasma-optical emission spectrometer; inductively coupled plasma mass spectrometry), after treatment with CNC, CNF and ChNC suspensions. The highest Ag+ ion removal was measured near neutral pH for CNC, being 34.4 mg/g, corresponding to 64 % removal. ChNC showed 37 % and CNF showed 27 % removal of silver ions. The WDX (wavelength dispersive X-ray analysis) and XPS (X-ray photoelectron spectroscopy) analysis confirmed the presence of silver ions on the surface of the nanocellulose and nanochitin after adsorption. Surface adsorption on the nanoparticles via electrostatic interactions is considered to be the prominent mechanism of heavy metal ion capture from aqueous medium, with CNC with negative surface charge and negatively charged functional groups being most favourable for the adsorption of positively charged Ag+ ions compared to other native bionanomaterials.  相似文献   

2.
The degree of substitution (DS) and distribution of O-acetyl groups of water-soluble cellulose acetate (CA) were investigated by 13C-NMR. For this purpose, three different series of CA samples with low DS were prepared by respective homogeneous reaction, i.e., (1) deacetylation of cellulose triacetate (CTA) in acetic acid—water solution (D-series), (2) reaction of CTA with hydrazine (H-series), and (3) acetylation of cellulose with acetic anhydride in a 10% LiCl-dimethylacetamide solution (A-series). It was found that (i) water-soluble CA can be obtained only from D-series products, (ii) the DS value of water-soluble CA ranges from 0.5 to 1.1, (iii) the D-series products exhibit little difference between the relative DS values at C-2, C-3 and C-6 hydroxyl groups, and (iv) the relative DS at C-6 hydroxyl groups is very high compared to those at C-2 and C-3 hydroxyl groups in H- and A-series products. Aqueous solution of water-soluble CA (D-series sample) showed no gel—sol transition, even when the temperature was raised to 95°C. X-ray diffraction observations revealed that the water-soluble D-series samples were essentially noncrystalline, but the water-insoluble A-series samples were crystalline. It was also found that the relative ease of acetylation is C-6 > C-2 > C-3.  相似文献   

3.
Bio-based films were prepared from LiCl/DMAc solutions containing sisal cellulose esters (acetates, butyrates and hexanoates) with different degrees of substitution (DS 0.7–1.8) and solutions prepared with the cellulose esters and 20 wt% sisal cellulose. A novel approach for characterizing the surface morphology utilized field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and contact angle analysis. XPS and ToF-SIMS were a powerful combination while investigating both the ester group distribution on the surface and effects of cellulose content on the film. The surface coverage by ester aliphatic chains was estimated using XPS measurements. Fibrous structures were observed in the FE-SEM images of the cellulose and bio-based films, most likely because the sisal cellulose chains aggregated during dissolution in LiCl/DMAc. Therefore, the cellulose aggregates remained after the formation of the films and removal of the solvent. The XPS results indicated that the cellulose loading on the longer chain cellulose esters films (DS 1.8) increased the surface coverage by ester aliphatic chains (8.2 % for butyrate and 45 % for hexanoate). However, for the shortest ester chains, the surface coverage decreased (acetate, 42 %). The ToF-SIMS analyses of cellulose acetate and cellulose hexanoate films (DS 1.8) revealed that the cellulose ester groups were evenly distributed across the surface of the films.  相似文献   

4.
13C-NMR spectra of trityl cellulose (Tr-Cell), tosyl cellulose (Ts-Cell), cellulose S-methyl xanthate (Cell-M-Xan), and cellulose formate (CF) in dimethylsulfoxide-d6 were analyzed at 50.4 MHz. It was found that the distribution of substituents in the anhydroglucose units of these cellulose derivatives can be estimated from their ring carbon spectra. The results showed that (i) in Tr-Cell having degree of substitution (DS) lower than 1, the hydroxyl groups at C-6 carbon position are selectively tritylated, (ii) in the case of Ts-Cell, the difference in the relative DS value among three different types of hydroxyl groups is not large, although the relative reactivities of hydroxyl groups toward tosylation decrease in the order C-6 > C-2 > C-3, (iii) in Cell-M-Xan, the hydroxyl groups at C-3 carbon position are mainly substituted, and (iv) the ease of formylation is C-6 > C-2 > C-3. The 100.8 MHz 13C-NMR spectra of O-methyl cellulose (MC) revealed that the reactivity order in commercial MC prepared from alkali cellulose is C-6 ? C-2 > C-3. Concerning MC, its water solubility was also discussed in terms of the distribution of substituents along the cellulose chain.  相似文献   

5.
Solid state NMR spectroscopy was applied to determine the overall degree of substitution (DS) and the degrees of substitution at C-6 (DSC-6) and C-2/3 (DSC-2/3). Four commercial methyl cellulose samples were used, having a DS between 0.51 and 1.96 as determined by wet-chemical analysis. The strategy and optimization of the NMR data acquisition as well as the data evaluation procedures are explained in detail. Optimization of the approach mainly comprised (a) maximizing the signal by choice of NMR probe, MAS spinning frequency and B 0 field, (b) minimizing the measurement time by a Torchia-type experiment and (c) suppressing probe background by rotor-synchronized echo detection. Data evaluation used simply the integration of three different spectral ranges in the 13C NMR spectrum. The results of the experiments were in good agreement with the wet-chemical data. The NMR approach takes about the same analysis time as the conventional hydrolysis/chromatography analysis. However, it is a generally applicable and simple alternative without need for an extended sample preparation which is most useful if wet-chemical/chromatographic analyses are undesired or unavailable. Further studies have to concentrate on the validation of the analytical method and application to a larger sample array.  相似文献   

6.
A novel combined main-chain/side-chain liquid-crystalline polymer based on an ethyl cellulose main chain containing azobenzene mesogens (AzoEC) was successfully synthesized. Molecular characterization of the resulting polymers with different degrees of substitution (DS) was performed with proton nuclear magnetic resonance (1H NMR), Fourier-transform infrared spectroscopy (FTIR), and gel permeation chromatography (GPC). Thermal stability was investigated by thermogravimetric analysis (TGA). The phase transitions and liquid-crystalline behavior of these polymers were investigated by differential-scanning calorimetry (DSC), polarized optical microscopy (POM), and wide-angle X-ray diffraction (WAXD). The results indicate that DS has substantial effect on the liquid-crystalline behavior of these polymers. AzoEC with low DS only shows the cholesteric phase similar to ethyl cellulose (EC). However, when DS increases to a specific value, AzoEC begins to show fascinating supramolecular structures. The supramolecular structure of AzoEC with maximum DS consisted of a large-scale ordered lamellar structure formed by EC main chains and a small-scale ordered structure formed by azobenzene mesogens.  相似文献   

7.
Films of cellulose nanofibrils (CNF) (referred to as nanopaper) present a great potential in many applications due to the abundance, low environmental impact, excellent oxygen barrier properties and good mechanical performance of CNF. However, the strong hygroscopic character of the natural nanofibers limits their use in environments with high relative humidity. In this paper, we introduce a simple route for the esterification and processing of CNF with the aim of reducing their hydrophilicity, and producing hydrophobic cellulose nanopaper with reduced moisture sensitivity. The preparation steps of hydrophobic nanopapers involve vacuum filtration, solvent exchange from water to acetone, and reaction with anhydride molecules bearing different hydrophobic alkyl chains by hot pressing. Porous films having a surface area between 38 and 47 g/m2 and pore sizes in the 3–200 nm range are obtained. This method preserves the crystalline structure of native cellulose, and successfully introduces hydrophobic moieties on CNF surface as confirmed by FTIR, XPS and elemental analysis. As a result, modified nanopapers have a reduced moisture uptake, both higher surface water contact angle and wet tensile properties as compared with reference non-modified nanopaper, thus illustrating the benefit of the modification for the use of cellulose nanopaper in humid environments.  相似文献   

8.
The electronic structure and magnetic states in the heterometallic hexanuclear complex Mn4IIFe2III4-O)2(Piv)10 · MeCN4 have been studied by X-ray photoelectron spectroscopy (XPS). The substitution of two Mn atoms for two Fe atoms in the hexanuclear complex was found to have an effect on the patterns of iron and manganese X-ray photoelectron spectra. XPS data are evidence of the high-spin paramagnetic state of MnII and FeIII atoms, as well as of the ligand-metal charge transfer upon complex formation. In the heteroatomic complex, the degree of bond covalence increased for both the manganese and iron atoms. The results obtained are in good agreement with X-ray diffraction data.  相似文献   

9.
Due to the extraordinary versatility of the perovskite structure in accommodating different dopant ions in its structure, in recent years a huge number of multifunctional perovskite materials have been developed. In this work we aim to obtain high temperature-stable and huge dielectric constant materials for supercapacitors by doping divalent Mg2+ and trivalent Sb3+ ions into the octahedral sites, and divalent Sr2+ ions into the dodecahedral sites of lead zirconate-titanate perovskite. The resulting (Pb0.95Sr0.05)(Zr0.425Ti0.45Mg0.042Sb0.083)O3-δ is examined by X-ray diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM), dielectric spectroscopy (DS) and resonance dielectric spectroscopy (RDS) in order to correlate composition, local structure, ion valence and chemical environment of the doped material with the dielectric properties. HRTEM evidences that a composite structure, with co-existent ferroelectric domains and relaxor nanodomains, is formed by doping. XPS shows that Sb3+ and Mg2+ substitute for the Ti4+/Zr4+ ions, pointing to these strong defects as the main cause for the appearance of the relaxor phase. DS and RDS found that the ferroelectric lead zirconate-titanate transforms into a re-entrant relaxor-ferroelectric composite with a huge dielectric constant of about 104 which remains stable (within ±10%) in the high temperature range up to 250 °C, pointing to this mechanism of relaxor phase re-entrance below the normal ferroelectric phase transition, as being responsible for the enhancement.  相似文献   

10.
Synthesis of maleated pimaric acid (MPA) cellulose esters is first reported in this work. Cellulose esterification was performed by reacting microcrystalline cellulose with monoacid chloride of MPA (MPA-Cl) in presence of pyridine as catalyst and reaction medium. The syntheses were started in a heterogeneous solid–liquid reaction medium, but as the reaction advanced, the reaction mass turned into a homogeneous solution. The effects of MPA-Cl/anhydroglucose unit molar ratio, reaction temperature, and reaction duration on the yield and degree of substitution (DS) of cellulose esters (CEs) were investigated. CEs with DS ranging from 2.6 to 2.8 were achieved at molar ratios of 5.5–6.0 after 12–16 h at 118 °C. The purified products were characterized by elemental analysis, IR and 13C-NMR spectroscopy, and thermogravimetric analysis. CEs are soluble or partially soluble in usual organic solvents, depending on DS. Transparent films were prepared using CE-cyclohexanone solutions.  相似文献   

11.
FT Raman investigation of sodium cellulose sulfates (NaCS) was reported. Different NaCS were prepared by two diverse sulfation methods and their total degrees of substitution (DS) of sulfate groups were determined through either 13C-NMR spectroscopy or elemental analysis. Subsequently, these NaCS were characterized with FT Raman spectroscopy. The caused bands through the introduction of the sulfate groups in cellulose chain were explained and assigned. Additionally, a strong linear correlation between the areas under the bands ascribed to the stretching vibrations of C–O–S groups and the total DS of NaCS was presented. A rapid method of quantifying the total DS of NaCS was established. Finally, sodium sulfate (Na2SO4), a salt that is very often produced during the sulfation of cellulose, was found to be analyzable even with a weight content of 0.12% in NaCS. The method of quantifying the content of this salt in NaCS was investigated with Raman spectroscopy.  相似文献   

12.
采用硫酸水解法制备纳米纤维素晶须, 再以冰醋酸为分散介质, 浓硫酸为催化剂, 醋酸酐为酯化剂对纳米纤维素晶须进行不同程度醋酸酯化改性, 得到醋酸酯化的纳米纤维素. 采用红外光谱(FTIR)、 X射线光衍射(XRD)、 透射电子显微镜(TEM)和X射线光电子能谱(XPS)等手段对改性产物进行分析和表征. 结果表明, 改性纳米纤维素晶须中醋酸酯基的平均取代度过小或过大时均不适宜用作复合材料的增强相. 当改性纳米纤维素晶须中醋酸酯基的平均取代度为0.05时, 醋酸酯化反应只发生在纳米纤维素晶须的表面. 此时, 晶须能在丙酮中稳定悬浮, 表现出流动双折射现象, 并保持了改性前纳米纤维素晶须的棒状形态和高结晶度. 将这种改性后的纳米纤维素晶须作为增强相与醋酸纤维素通过溶液浇铸法制成纳米复合膜, 结果显示, 与空白醋酸纤维素膜相比, 添加改性纳米纤维素晶须后, 纳米复合膜的拉伸强度、 杨氏模量和断裂伸长率都得到了提高. 在玻璃化转变区间纳米复合膜储能模量的降低幅度小于空白膜.  相似文献   

13.
Summary: Cellulose nanofibrils (CNF) were extracted by acid hydrolysis from cotton microfibrils and nanocomposites with polyaniline doped with dodecyl benzenesulphonic acid (PANI-DBSA) were obtained by in situ polymerization of aniline onto CNF. The ratios between DBSA to aniline and aniline to oxidant were varied in situ and the nanocomposites characterized by four probe DC electrical conductivity, ultraviolet-visible-near infrared (UV-Vis - NIR) and Fourier-transform infrared (FTIR) spectroscopies and X-ray diffraction (XRD). FTIR and UV-Vis/NIR characterization confirmed the polymerization of PANI onto CNF surfaces. Electrical conductivity of about 10−1 S/cm was achieved for the composites; conductivity was mostly independent of DBSA/aniline (between 2 and 4) and aniline/oxidant (between 1 and 5) molar ratios. X-ray patterns of the samples showed crystalline peaks characteristic of cellulose I for CNF samples, and a mixture of both characteristic peaks of PANI and CNF for the nanocomposites. Field emission scanning electron microscopy (FESEM) characterization corroborated the abovementioned results showing that PANI coated the surface of the nanofibrils.  相似文献   

14.
New paths for the fast and reliable analysis of cellulose esters (CE) via subsequent functionalization and 1H NMR spectroscopy were studied. Perpropionylation of the CE is an inexpensive and efficient method. For cellulose diacetates used as representative ester well resolved 1H NMR spectra were obtained, which can be used for the calculation of the over all degree of substitution (DS) and the partial DS values at position 2, 3, and 6. No transesterification occurs during the subsequent acylation and a standard deviation of S2 = 1.32 x 10−4 was found for a series of experiments. In case of more complex ester structures especially with extended aliphatic moieties per-4-nitrobenzoylation need to be applied prior to NMR measurements. The spectra obtained can be completely assigned and applied for the calculation of DS values.  相似文献   

15.
A hybrid nanopaper consisting of carbon nanofibre (CNF) and/or clay, polyhedral oligomeric silsesquioxane (POSS), ammonium polyphosphate (APP), has been fabricated through the papermaking process. The as-prepared hybrid nanopaper was then incorporated onto the surface of glass fibre (GF) reinforced polymer matrix composites through injection moulding. The morphologies of hybrid nanopapers with and without the polymer resin were characterized with scanning electron microscopy (SEM). The polymer resin penetrated the entire nanopaper under a high-pressure compressed air system. The thermal decomposition behaviour of hybrid nanopapers infused with resin was studied with real-time thermogravimetric analysis/Fourier transform infrared spectrometry (TGA/FTIR). The test results indicate that the addition of clay in the hybrid paper increased the char residues of the nanocomposites. The fire retardant performance of composite laminates incorporating hybrid nanopaper was evaluated by cone calorimeter testing using a radiant heat flux of 50 kW/m2. The cone test results indicated that the peak heat release rate (PHRR) decreased dramatically in the case of laminate composites incorporating CNF/clay/APP hybrid paper. However, the extent of reduction of PHRR of the composite laminates incorporated with CNF/POSS/APP hybrid paper was lower. The formation of compact char materials was observed on the surface of the residues and analyzed by SEM and X-ray photoelectron spectroscopy (XPS). The flame retardant mechanisms of hybrid nanopapers in composite laminates are discussed.  相似文献   

16.
The ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) as a reaction medium was studied for the synthesis of cellulose benzoates by homogeneous acylation of dissolved cellulose with benzoyl chlorides in the absence of any catalysts. Cellulose benzoates with a degree of substitution (DS) in the range from about 1 to 3.0 were accessible under mild conditions. The DS of cellulose derivatives increased with the increase of the molar ratio of benzoyl chloride/anhydroglucose unit (AGU) in cellulose, reaction time, and reaction temperature. Benzoylation of cellulose with some 4-substituted benzoyl chlorides including 4-toluoyl chloride, 4-chlorobenzoyl chloride and 4-nitrobenzoyl chloride was also readily carried out under mild conditions. Furthermore, regioselectively substituted mixed cellulose esters were synthesized in this work. All products were characterized by means of FT-IR, 1H-NMR, and 13C-NMR spectroscopy. In addition, at the end of benzoylation of cellulose, the ionic liquid AmimCl was easily recycled. When the recycled AmimCl was used as the reaction media, the cellulose benzoate with a similar DS was obtained under comparable reaction conditions.  相似文献   

17.
Ethylene diamine (EDA)/salt solvent systems can dissolve cellulose without any pretreatment. A comparison of the electrical conductivity of different salts in EDA was made at 25 °C, and conductivity decreased in the order of KSCN>KI>NaSCN at the same molar concentration. Among the salts tested, potassium thiocyanate (KSCN) was capable of dissolving both high molecular weight (DP>1000) and low molecular weight (DP = 210) cellulose, and this was confirmed by polarized light microscopy. 39K and 14N NMR experiments were conducted at 70 °C as a function of cellobiose concentration with EDA/KSCN as the solvent. The results showed that the K+ ion interacts with cellobiose more than the SCN ion does. Recovered cellulose was studied by infrared spectroscopy (FTIR) and wide angle X-ray diffraction (WAXD). Changes in the FTIR absorption bands at 1,430 and 1,317 cm−1 were associated with a change in the conformation of the C-6CH2OH group. The changes in positions and/or intensities of absorption bands at 2,900, 1,163, and 8,97cm−1 were related to the breaking of hydrogen bonds in cellulose. X-ray diffraction studies revealed that cellulose, recovered by precipitating cellulose solutions with water, underwent a polymorphic transformation from cellulose I to cellulose II.  相似文献   

18.
19.
A new type of water‐soluble ionic cellulose was obtained by means of the dissolution of cellulose in dimethylimidazolium methylphosphite at elevated temperatures over 120 °C. FTIR spectroscopy, 1H and 13C NMR spectroscopy, and elemental analysis results revealed that the repeating unit of the water‐soluble cellulose consists of a dialkylimidazolium cation and a phosphite anion bonded to cellulose. The degree of phosphorylation on the cellulose chain was between 0.4 and 1.3 depending on the reaction temperature and time. With an increasing degree of phosphorylation, water solubility was increased. Scanning electron microscopy and X‐ray diffraction analyses revealed that the cellulose crystalline phase in the parent crystalline cellulose changed to an amorphous phase upon transformation into ionic cellulose. Thermogravimetric analysis showed the prepared phosphorylated cellulose was stable over 250 °C and a substantial amount of residue remained at 500 °C.  相似文献   

20.
The acetylation of cellulose nanofiber (CNF) introduced hydrophobicity to the surface making it compatible with non-polar matrix, and also making it an effective nanofiller for polychloroprene (PCR) composite. The CNF was extracted from oil palm empty fruit bunches. Previously, CNF was dispersed in water, and this water was subsequently substituted with N,N-dimethylacetamide, in which CNF was acetylated by acetic anhydride with a pyridine catalyst. IR spectroscopy revealed that the acetylation extent was controllable by the reaction time. After the reaction, the DMAc was replaced by dichloromethane, and finally mixed with PCR. The CNF–PCR mixture was cast and composite film was formed at room temperature. Structural analysis and mechanical tests indicated that acetylation treatment made CNF compatible with PCR, and that nano-dispersed CNF raised the mechanical strength of the PCR–CNF nanocomposite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号