首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
为减缓温室效应,将CO_(2)转换成高附加值的甲醇是减少CO_(2)排放的有效途径,而高效催化剂是CO_(2)加氢制甲醇反应规模化的关键.可调控合成的具有量子尺寸效应的纳米催化剂在该反应上具有独特的优势.因此我们深入探讨了反应机理,综述了纳米材料在CO_(2)加氢制甲醇中的研究进展,最后给出了高效催化剂可能的发展方向.  相似文献   

2.
刘聪  胡兴邦 《分子催化》2022,36(2):162-170
CO_(2)加氢制甲酸由于需同时活化惰性氢气及CO_(2)而富有挑战性,同时此过程原子经济性100%,具有很好的理论和现实研究价值,但文献中报道的活性较好的催化剂均为贵金属催化剂.为了开发活性更高的用于CO_(2)加氢制甲酸的铁基催化剂,我们采用理论计算方法研究了12种不同种类的PNP-Fe(PNP=2,6-(二-叔丁基-磷甲基)吡啶)化合物催化CO_(2)加氢制甲酸的过程.理论研究结果表明,CO_(2)加氢制甲酸反应过程包括H2活化及CO_(2)插入金属氢键两个步骤,H_(2)活化过程是整个反应的速控步骤.催化剂吡啶环上进行P原子取代可以显著降低H_(2)活化能垒.基于以上发现,我们设计了一种新颖的高效铁基催化剂,使用此催化剂催化CO_(2)加氢制甲酸反应,速控步骤能垒只有85.6 kJ/mol,催化活性与贵金属的比较接近.我们研究的12种铁基催化剂速控步骤能垒范围为85.6~126.4 kJ/mol,显示了配体良好的调控催化活性能力.  相似文献   

3.
采用物理掺杂法制备了生物质灰分作为助剂的融铁催化剂,通过X射线衍射、透射电镜、穆斯堡尔谱等方法对催化剂进行了表征,并在固定床反应器中对其CO_2加氢制高碳烃的催化性能进行了评价。结果表明,与不含生物质灰分助剂的催化剂相比,添加助剂的融铁催化剂粒径较小且尺寸分布较窄,Fe_3O_4、Fe_5C_2、Fe_3C和α-Fe四相协同共存,进而促使逆水气变换反应与C-C偶联的串联反应高效进行,在有效抑制甲烷生成的同时,可明显提升高碳烃选择性。高碳烃产物以C_(4-18)的烃类为主,在300℃、1. 0 MPa、4800 h~(-1)、H~2/CO_2=3. 0、助剂添加量为5%(质量分数)的条件下,其在烃类产物中选择性最高可达73. 9%。  相似文献   

4.
我们曾报道CO_2/H_2在CuO-ZnO及CuO-ZnO-ZrO_2催化剂上低压合成甲醇的反应,指出CuO-ZnO-ZrO_2对CO_2/H_2制甲醇具有较高的活性和选择性。本文通过TPD-MS测试研究了第3组分ZrO_2的加入对CO_2/H_2在CuO-ZnO-ZrO_2催化剂上低压合成甲醇的促进作用。 1 实验部分 催化剂的评价在恒压流动反应系统内进行。用色谱仪分析产物(Porapak Q柱,4 mm×3m,柱温120℃,CO、CO_2、CH_3OH、H_2O的保留时间分别为0.55、0.84、4.72、6.6 min),热  相似文献   

5.
采用柠檬酸盐凝胶法制备出纳米CuO-ZnO-ZrO_2(CZZ)催化剂,应用XPS、BET、XRD、H_2-TPR、H_2-TPD、CO_2-TPD和TG-DTA等检测手段对催化剂及前驱体的结构进行表征。研究了湿凝胶干燥时间和柠檬酸用量对催化剂结构的影响,并与燃烧法制得的催化剂进行对比,考察了不同催化剂CO_2加氢制甲醇的性能。研究表明,延长湿凝胶干燥时间可有效防止催化剂焙烧时发生喷溅,有利于催化剂中各组分的分散,提高催化剂对H_2和CO_2的吸附能力;112℃干燥48h制得的催化剂(CZZ-48h)BET比表面积为43.5m~2/g,高于燃烧法;柠檬酸用量等于化学计量比时催化剂的性能最佳,在240℃、2.6MPa、空速为3600h-1、H_2/CO_2(体积比)为3的条件下甲醇时空收率达109.4g/(kg·h);柠檬酸过量会影响催化剂组分的分散度,并造成分解残留覆盖催化剂表面活性位而不利于CO_2加氢反应。  相似文献   

6.
通过原位引入Mg一步法合成了Mg@MCM-41复合介孔材料,并将其作为载体制备了高性能Ni基CO_2甲烷化催化剂。通过BET、XRD、TEM、CO_2-TPD、TG等手段对催化剂进行了表征分析,着重比较了Mg/Si物质的量比对于催化剂特性的影响。结果表明,当Mg/Si物质的量比为0.05时能够在不破坏孔道结构的前提下显著增加催化剂上的碱性位,有效地提高了催化剂对CO_2的吸附和活化,从而促进CO_2甲烷化反应过程中反应物的转化。实验所制得的催化剂均具有较好的热稳定性和催化反应活性,其中,Ni/0.05Mg@MCM-41在CO_2甲烷化反应表现出最优的催化性能,在320℃,1 MPa的条件下,CO_2转化率和CH_4选择性分别高达84.3%和97.8%。  相似文献   

7.
考察了经不同温度还原的Fe/ZrO2 催化剂在CO2 加氢制低碳烃反应中的催化活性 ,最佳结果为CO2 转化率2 7 0 % ,对C2 + 烃的选择性 5 6 7% .采用XRD ,57FeM ssbauer谱 ,FeK 吸收边的X射线吸收近边结构 (XANES)及扩展X射线吸收精细结构 (EXAFS)等表征方法研究了催化剂的表面结构 .结果表明 ,在ZrO2 表面上主要存在α Fe及配位不饱和的Fe3 + 两种物种 .催化剂表面明显呈氧缺位、零价铁相对富集的状态 .还原温度对表面结构有显著的影响 ,最佳还原温度与表面Fe O键的键长有关 .结合这种催化剂在CO2 加氢制低碳烃反应中的催化活性 ,认为α Fe与配位不饱和的Fe3 + 物种的协同作用是其具有较高催化活性的重要原因  相似文献   

8.
CO2+H2制含氧化合物的研究   总被引:19,自引:1,他引:19  
卢振举  林培滋 《分子催化》1993,7(2):156-160
作为自然界中含有丰富碳源的CO_2,经过催化加氢制含氧化合物的研究,近年来为人们所关注,特别是CO_2加氢制甲醇.从CO_2出发制含氧化合物其前景是诱人的,则可利用碳和氧得到化学品,二则减少了自然界中的CO_2含量,有益于环境保护.本文对Cu-Zn系和Rh-V系催化剂进行初步考察.  相似文献   

9.
铁基催化剂在费托合成反应中对高附加值α-烯烃具有高选择性,然而,催化剂容易由于碳沉积而失活,并且高CO_2选择性明显降低了合成气的碳利用效率。为此,本文开发了一种简单有效的铁基催化剂制备方法来解决这一问题。具体地说,采用水热法制备了平均粒径约580 nm Fe_3O_4微球,并将其与GO在溶液中超声混合,离心、干燥后即得到Fe/GO催化剂。GO引入能使大的Fe_3O_4微球在反应过程中逐渐演变成小尺寸碳化铁纳米粒子(约9.1 nm),有效地抑制了催化剂的烧结和积炭。催化剂显示了优异的活性、稳定性和高α-烯烃选择性。表征结果表明,K加入到Fe_3O_4微球中,催化剂在演变过程中形成了更高的ε′-Fe2.2C含量(约为58.9%),有利于显著降低CO_2选择性。  相似文献   

10.
采用一锅蒸发诱导自组装法(EISA)制备了一系列不同铈锆物质的量比的铈锆固溶体催化剂,用TGA研究了其热化学循环分解CO_2制CO的催化性能,并采用XRD、Raman光谱、H2-TPR、XPS、SEM和N_2吸附-脱附等手段对催化剂的物相结构、还原性能和表面化学性质进行了表征分析,用热重分析(TGA)研究了铈锆固溶体对热化学循环分解CO_2制CO的催化性能。结果表明,随着Ce/Zr物质的量比增加,铈锆固溶体催化剂的CO_2高温分解活性先增大后减小。Ce/Zr物质的量比为1的Ce_(0.5)Zr_(0.5)O_2催化剂由于具有较多的晶格缺陷和氧空穴,氧迁移能力强,催化活性高,而Ce/Zr物质的量比为3的Ce_(0.75)Zr_(0.25)O_2催化剂具有相对稳定的氧空穴数,循环稳定性好。循环反应后,所有的催化剂均出现了一定程度的烧结,且富锆固溶体发生了相分离,这可能会影响催化剂的性能。  相似文献   

11.
The increasing anthropogenic emission of CO2 leads to global warming, to address which three strategies can be considered: (1) decrease fossil fuel consumption through increased utilization efficiency and lower per capita consumption; (2) replace fossil fuels with renewable energy sources like wind, tidal, solar, and biomass energies; (3) utilize CO2 efficiently. Despite efforts to reduce energy use and increase the use of carbon-neutral biofuels, it seems that fossil fuels will continue to be a major energy source for the next few decades. Tremendous effort is therefore being focused on developing effective technologies for CO2 capture and transformation. In particular, the transformation of CO2 into fuels and chemicals via reduction with renewable hydrogen is a promising strategy for mitigating global warming and energy supply problems. The hydrogenation of CO2, especially to C2+ hydrocarbons and oxygenates, has sparked growing interest. The C2+ species can be used as entry platform chemicals for existing value chains, thus providing more advantages than C1 compounds. However, optimizing catalyst design by integrating multifunctionalities for both CO2 activation and C-C coupling remains an ongoing challenge. Here, we provide a timely review on the recent progress that has been made in the hydrogenation of CO2 to higher-order alkanes, olefins, and alcohols by various heterogeneous catalysts. The thermodynamics and kinetics, as well as possible reaction pathways for CO2 hydrogenation, are discussed. The hydrogenation of CO2 to hydrocarbons usually involves the initial generation of CO via a reverse water-gas shift (RWGS) reaction followed by hydrogenation of the CO intermediate. The RWGS reaction proceeds through a redox route and an associative pathway. "CHx" insertion (carbide-type) and "CO" insertion are two proposed mechanisms for this Fischer-Tropsch-like synthesis. Fe-or Co-based catalysts have been widely used to catalyze the hydrogenation of CO2 to C2+ hydrocarbons via the CO intermediate. C2+ hydrocarbons can also be obtained by combining CH3OH synthesis with the methanol-to-hydrocarbon process (MTH). This reaction pathway has been realized over bifunctional systems comprising a CH3OH synthesis catalyst and an MTH catalyst. Alternatively, CO2 hydrogenation can occur via a RWGS reaction to the CO intermediate, and subsequent formation of higher alcohols from syngas. Higher alcohols (mostly CH3CH2OH) have been produced by using a hybrid tandem catalyst. Understanding of the activation mechanism, precise C-C coupling, and synergy control between the two active components requires further research. In the final part, we describe the future challenges and opportunities in heterogeneous catalysis of CO2 hydrogenation. The combination of calculations (precise theoretical models) and experiments (in-situ spectroscopic techniques) will facilitate the design of advanced catalysts to achieve both high CO2 conversion and C2+ product selectivity.  相似文献   

12.
We investigated catalytic behavior of iron in CO2 hydrogenation with and without a ruthenium component. Calcined iron-based catalysts were reduced by H2 and characterized by XRD, BET surface area and CO2, CO and C2H4 temperature-programmed desorption (TPD), and tested for CO2 hydrogenation. When Fe-K/γ-Al2O3 was used as a catalyst, CO2 conversion was 36%, but when Fe-Ru-K/γ-Al2O3 was used, CO2 conversion was 41%. The product selectivities for catalysts with and without the ruthenium component were also compared. Fe-K/γ-Al2O3 exhibited higher methane (16 mol%) and C2–C4 selectivity (39.6 mol%) than Fe-Ru-K/γ-Al2O3. The main products obtained with Fe-Ru-K/γ-Al2O3 were higher hydrocarbons such as C5+ hydrocarbons. For Fe-Ru-K/γ-Al2O3, the product distribution followed the Anderson–Schultz–Flory (ASF) distribution. However, in the case of Fe-Ru-K/γ-Al2O3, the hydrocarbon distribution deviates from the ideal ASF distribution. It is concluded that the readsorption rates of the primary hydrocarbon product increase exponentially with chain length in the ruthenium promoted catalytic system. The behavior of catalysts with and without the ruthenium will be explained by the CO2-, CO- and C2H4– profiles. In this study, it was confirmed that ruthenium component promoted the readsorption ability of -olefin, and then the chain length of hydrocarbon is higher. In addition, the microcrystalline wax produced in CO2 hydrogenation was a high-crystalline and olefin-rich hydrocarbon.  相似文献   

13.
在固定床反应器中,以甲苯作为生物质气化焦油模型化合物,橄榄石作为甲苯裂解催化剂,结合XRD、SEM、BET、H2-TPR等表征手段,考察了不同重整反应温度、CO_2浓度、橄榄石煅烧温度以及载镍量对甲苯催化重整性能的影响。结果表明,甲苯转化率随着重整反应温度的升高而增加,橄榄石对甲苯具有较高的催化活性,经900℃煅烧后的橄榄石活性最高。相比于橄榄石直接催化裂解甲苯,CO_2的加入能够显著降低催化剂表面的积炭率,当CO_2/C_7H_8物质的量比为4时,橄榄石催化剂表面的积炭率降低至17.0%。橄榄石载镍后,对C_7H_8/CO_2的催化重整性能进一步提高,甲苯转化率最高达到99.4%,但是积炭率也会随之增加。  相似文献   

14.
采用浸渍法制备了Ni/SiO2催化剂,应用等离子体技术对催化剂进行改性处理。以CO2甲烷化为模型反应对催化剂进行活性评价,通过H2程序升温还原(H2-TPR)和CO2程序升温脱附(CO2-TPD)技术对催化剂进行表征。研究了等离子体技术强化处理对催化剂吸附性能和还原性能的影响。结果表明,与常规焙烧的催化剂相比,等离子体技术改性处理提高了催化剂活性组分的分散度,增加反应活性位并调变了活性位对吸附物种的吸附强度,改进了催化剂的还原性能,CO2甲烷化反应活性和甲烷的时空产率显著提高。  相似文献   

15.
The efficient utilization of carbon dioxide (CO2) as a C1 feedstock is of great significance for green and sustainable development. Therefore, the efficient chemical conversion of CO2 into value-added products has recently attracted a lot of research attention in recent years. The transformation of CO2 generally requires high-energy substrates, specific catalysts, and harsh reaction conditions due to its high thermodynamic stability and kinetic inertness. Consequently, several efforts have been dedicated toward the development of high-performance catalysts and new reaction routes for CO2 conversion over the last few decades. To date, many routes of convert CO2 into value-added chemicals have been proposed, together with the development of heterogeneous and homogeneous catalysts. Among the advanced catalysts reported to date, ionic liquids (ILs) have been widely investigated and show great potential for the efficient, selective, and economical conversion of CO2 into highly valuable products under mild conditions, even under ambient conditions. Some task-specific ILs have been designed with unique functional groups (e.g., —OH, —SO3H, —NH2, —COOH, and —C≡N), which can act as the solvent, absorbent, activating agent, catalyst, or cocatalyst to realize the transformation of CO2 under metal-free and mild conditions. In addition, a variety of catalytic systems composed of ILs and metal catalysts have also been reported for the transformation of CO2, in which the combination of the IL and metal catalyst is responsible for CO2 conversion with high efficiency. In this review article, we summarize the recent advances in IL-mediated CO2 transformation into chemicals prepared via C—O, C—N, C—S, C—H, and C—C bond forming processes. ILs that can chemically capture CO2 with high capacity are first introduced, which can activate CO2 via the formation of IL-based carbonates or carbamates, thus realizing the transformation of CO2 under metal-free and mild conditions. Recent progress in IL-mediated CO2 transformations to form carbonates and various kinds of N- and S-containing compounds (e.g., oxazolidinones, ureas, benzimidazolones, formamides, methylamines, benzothiazoles, and other chemicals) as well as CO2 hydrogenation to give formic acid, methane, acetic acid, low-carbon alcohols, and hydrocarbons has been summarized in this review with a focus on the reaction routes, catalytic systems, and reaction mechanism. In these reactions, ILs can simultaneously activate the substrate via strong H-bonding in addition to activating CO2, and the cooperative effects among the ionic and molecular species and metal catalysts accomplish the reactions of CO2 with various kinds of substrates to afford a wide range of value-added chemicals. Finally, the shortcomings and perspectives of ILs are discussed. In short, IL-mediated CO2 transformations provide green and effective routes for the synthesis of high-value chemicals, which may have great potential for a wide range of applications.  相似文献   

16.
将大气中的二氧化碳(CO2)转化为燃料或高附加值化学品是降低大气中CO2含量、 减缓温室效应的有效途径之一. 光催化CO2化学转化条件温和, 能耗低, 在CO2转化中占有重要地位. 金属-有机框架(MOF)基材料由于具有比表面积大、 光电性质优良和可调节性强等特点, 是CO2光催化转化的常用催化剂之一. 本文综合评述了近两年MOF基材料在光催化CO2还原反应、 CO2环加成反应和CO2羧基化反应中的应用, 阐释了MOF基材料在CO2光催化转化中的优势和局限性, 并展望了其未来发展.  相似文献   

17.
The catalytic hydrogenation of CO2 to multi-carbon compounds under mild conditions would not only provide value-added products, but also benefit for the reduction of CO2 emission if hydrogen derives from renewable energy sources. Herein, we report CoCO3 supported Ru and Pt nano-particles, which could catalyze hydrogenation of CO2 to produce higher hydrocarbons(C2-C26) and higher alcohols(C2OH-C6OH) at low temperatures of 80-130℃. The selectivity for C2+ compounds reached 81.1% at 80℃, which was the highest value reported so far. This work provides a promising catalyst for highly selective converting CO2 and H2 to C2+ compounds at low temperatures.  相似文献   

18.
采用高温固相法制备了系列Zn改性的层状K-Fe-Zn-Ti催化剂,用于CO2加氢经费托合成直接制烯烃反应。采用SEM、TEM、XRD、H2-TPR、CO2-TPD、XPS、N2吸附-脱附和TG等手段对反应前后的催化剂进行了表征,对K-Fe-Zn-Ti催化剂的组成-结构-性能关系进行了关联研究。结果表明,所制备的催化剂均出现K2.3Fe2.3Ti5.7O16物相,为典型的层状金属氧化物(Layered Metal Oxides,LMO)结构;Zn改性后生成了ZnFe2O4物相,降低了催化剂样品结晶度,增强了表面碱性,促进了CO2表面吸附。在CO2加氢反应中,K-Fe-Zn-Ti系列催化剂均具有较高的烯烃选择性(O/P>6.5),Zn改性促进了C5+的生成,显著提高了C4+线性α-烯烃(linear α-olefins,LAOs)的选择性,C4+烃中LAOs含量由Zn改性前的54.6%提高至75.2%。在所考察的范围内,随Zn/Fe比的增加,烯/烷比(C2-4=/C2-40,O/P)先增加后降低,但对重烃含量以及LAOs选择性影响不明显。K-Fe-Zn-Ti催化剂具有较好的稳定性,经100 h在线反应后,仍保持LMO结构。  相似文献   

19.
以LaCo1-xGaxO3为前驱体,还原后得到的Co/La2O3-La4Ga2O9复合氧化物催化剂,用于CO2加氢直接制乙醇。通过XRD、XPS、TPD和TEM等技术对催化剂结构进行了表征,采用微型固定床反应器在230-290℃、3 MPa、空速(GHSV)为3000 mL/(gcat·h)和H2/CO2进料物质的量比为3.0的条件下,考察了该Co/La-Ga-O复合氧化物用于CO2加氢制乙醇的催化性能。结果显示,该Co/La-Ga-O复合氧化物催化剂对生成乙醇具有很高的选择性。与LaCoO3相比,Ga的掺杂可抑制甲烷的形成,促进醇类(特别是乙醇)的生成。当Co/Ga比为7:3时,还原后的LaCo1-xGaxO3催化剂体现出最好的催化性能,CO2转化率为9.8%,总醇选择性达到74.7%,其中,液相产物中的乙醇质量分数可达到88.1%。基于实验结果推测,该催化剂上Co0和Coδ+的协同作用促使CO2选择性加氢生成乙醇。  相似文献   

20.
利用介质阻挡放电等离子体法制备了5Ni-5La/SiO2催化剂,并用于甲烷干重整反应.在常压, 700℃,空速为4.8×104 mL·g-1·h-1时,等离子体法所制催化剂催化甲烷干重整反应的CH4和CO2的转化率分别为81.2%和88.4%,且在30 h内保持稳定;而传统催化剂的CH4和CO2初始转化率分别为81%和88.4%, 30 h后下降到58.8%和68.6%.研究结果表明,介质阻挡放电等离子体法制备的催化剂具有更高的分散性和更强的金属与La2O3的相互作用.等离子体处理增加了Ni周围的电子密度,增强了CO2在催化剂表面的吸附能力和活化能力,促进了HCOO-中间体的生成,有利于反应正向进行.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号