首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
重金属污染不仅威胁着自然环境的持续发展,也对人类健康提出了严峻的考验。其中,六价铬因为环境污染持续久,危害大,更是得到各国研究者的重视。各种吸附材料对于六价铬的移除能力以及移除机理不尽相同。本文主要介绍了Cr(Ⅵ)吸附材料分类及其特点,重点分析了聚合物吸附材料在吸附和分离Cr(Ⅵ)方面的应用进展,并简要介绍了Cr(Ⅵ)吸附过程中的吸附动力学模型和等温方程式,以Langmuir和Freundlich模型等为例加以说明,为解决重金属铬离子引起的环境污染尤其水污染问题提供借鉴。  相似文献   

2.
合成了四乙烯五胺功能化纳米高分子材料(TEPA-NP),采用傅里叶变换红外光谱分析(FTIR)、有机元素分析(EA)、X射线光电子能谱分析(XPS)等手段对其进行了表征,重点考察了其对水中Cr(VI)与磷酸根离子共存时的吸附机理.结果表明,溶液p H对TEPA-NP的吸附性能影响较大.对于Cr(VI)或磷酸盐单一体系,p H 2.5时TEPA-NP的吸附效果最佳;吸附热力学均符合Langmuir模型,吸附动力学均符合准二级速率方程.TEPA-NP对Cr(VI)的饱和吸附量为123.5 mg/g;吸附过程为吸热熵增的自发过程,ΔH为16.06 k J/mol,ΔS为59.02 J/(mol K),308 K时ΔG为-2.10 k J/mol;吸附活化能为30.28 k J/mol.TEPA-NP对磷酸盐的饱和吸附量为149.2 mg/g;吸附过程为放热熵增的自发过程,ΔH为-1.74 k J/mol,ΔS为1.91J/(mol K),308 K时ΔG为-2.32 k J/mol;吸附活化能为18.85 k J/mol.当磷酸盐的共存浓度小于100 mg/L时,磷酸盐对TEPA-NP吸附Cr(VI)几乎没有影响;而当Cr(VI)的共存浓度大于5 mg/L时,Cr(VI)对TEPA-NP吸附磷酸盐的影响已较为明显,可使TEPA-NP吸附磷酸盐的饱和吸附量减小17.3%;结合红外和XPS表征可以推测TEPA-NP对Cr(VI)的吸附涉及静电与配位相互作用,而对磷酸盐以静电吸附为主;Cr(VI)与磷酸盐共存时,TEPA-NP优先吸附Cr(VI).Cr(VI)可以通过竞争取代吸附在TEPA-NP上的磷酸根,且随着Cr(VI)初始浓度增大,TEPA-NP上吸附的总磷脱附的比例增大;而磷酸根对Cr(VI)的竞争吸附较难实现.  相似文献   

3.
超支化胶原纤维吸附剂对Cr(VI)的吸附特性和机理研究   总被引:1,自引:0,他引:1  
王学川  张斐斐  强涛涛 《化学学报》2012,70(24):2536-2542
超支化聚合物改性胶原纤维(CF-HBPN)作为吸附剂处理含Cr(VI)模拟废水,研究了CF-HBPN吸附Cr(VI)时溶液pH、吸附剂用量和Cr(VI)初始浓度等对去除效率的影响;采用XPS,SEM-EDS等分析检测方法对CF-HBPN表面组成和结构进行表征,探索吸附机理.结果显示:CF-HBPN对Cr(VI)的去除率随溶液pH降低而升高,在pH为3.0时达到最大,随吸附剂用量增大而增大,随Cr(VI)初始浓度增加而减小.CF-HBPN对Cr(VI)的吸附容量随吸附剂用量增加而减小,随Cr(VI)初始浓度增加而增加,最后趋于稳定.30℃时,4.0 g L-1的CF-HBPN对50 mg L-1Cr(VI)溶液的去除率可达99.57%,最大吸附容量为38.94 mg g-1.0.18 mol L-1的NaOH溶液对吸附Cr(VI)后的CF-HBPN解吸效果最好.SEM-EDS分析结果表明CF-HBPN表面较粗糙,是一种具有空间网状结构的材料,吸附过程存在离子交换.XPS分析结果表明Cr(VI)主要吸附在CF-HBPN表面,铬酸根阴离子与质子化氨基的静电吸附作用为主要吸附作用.  相似文献   

4.
以海藻酸钠(SA)、纤维素纳米纤维(CNF)和聚乙烯亚胺(PEI)为原料,制备了三元复合水凝胶珠SCP@PEI,扫描电镜、红外光谱及X射线光电子能谱的测试结果均表明其已被成功制备。pH值为3时,其对Cr(VI)的吸附效果最佳,这主要与Cr(VI)的赋存形态有关。Freundlich等温吸附模型可较好地拟合其吸附等温线,对Cr(VI)的最大吸附量为6.49mmol/g,热力学参数表明,吸附为自发、吸热、熵增的过程。吸附动力学曲线遵循拟二级动力学模型,6h可达到吸附平衡。主导作用机制包括质子化胺基参与的静电吸附、羟基参与的Cr(VI)还原以及羟基和羧基参与的Cr(III)配位作用。此外,SCP@PEI易于再生,5次循环使用后其对Cr(VI)的吸附量仅下降了4.31%,结果进一步证明其性能稳定,未来应用前景广阔。  相似文献   

5.
以玫瑰茎为原料,制备了多孔炭材料,并将其应用于含Cr(VI)的污染水净化。研究结果表明,用玫瑰茎制备的炭材料具有多孔结构,且具有较高的比表面积。应用EDS分析和傅立叶红外光谱分析进一步证明了该炭材料具有含氧官能团活性位点,是一种潜在的吸附材料。将其应用于含Cr(VI)污染水净化研究结果表明,净化过程符合准二级动力学,最大吸附量可达344.83 mg/g,明显高于市售污水净化用炭材料Norit CGP(最大吸附量305.81 mg/g)。这种炭材料有望成为性能优异的含Cr(VI)污水的净化剂。  相似文献   

6.
采用分散聚合法通过共聚、开环反应, 对纳米Fe3O4进行表面功能化修饰, 得到富含NH2官能团的纳米磁性高分子复合材料. 通过透射电镜(TEM)、振动样品磁强计(VSM)、热重差热分析(TGA)、X射线衍射(XRD)、红外光谱(IR)等对其进行表征, 着重研究了其作为吸附剂对Cr(VI)的吸附性能. 结果表明: 该吸附剂对Cr(VI)的吸附能在10 min内达到平衡; 废水溶液pH值能显著影响吸附剂对Cr(VI)的吸附效果, pH为2.5时效果最佳. 废水中Cr(VI)的初始浓度、吸附时间、温度等因素对吸附效果均有不同程度的影响. 结合相应pH值下Cr(VI)的形态分布, 探讨了这种新型材料对Cr(VI)的吸附机理. 结果表明: 其吸附机理及吸附容量与废水中Cr(VI)的离子形式有关; 吸附过程以离子交换与静电引力为主. 等温吸附数据符合Langmuir模型, T=308 K, pH=2.5, V=40 mL时, 吸附剂的饱和吸附容量qm=25.58 mg/g. 吸附为吸热过程, 焓变ΔH=8.64 kJ/mol.  相似文献   

7.
对1.0~1.6mm的新疆核桃壳进行改性,在其表面引入氨基基团,以此作为吸附剂,研究其对含Cr(VI)模拟废水的静态吸附性能。实验结果表明,改性核桃壳对Cr(VI)有很好的吸附作用,对于50m L浓度为20mg/L模拟水样,当温度为25℃,水样初始p H值为5.89,吸附剂用量为0.50g,吸附时间为180min时,Cr(VI)的去除率可以达到98.6%,并且随着体系温度的升高,改性核桃壳对Cr(VI)的吸附量逐渐增加。吸附等温线拟合结果表明,Langmuir吸附等温模型能更好地描述上述吸附过程。  相似文献   

8.
使用盐酸对吸附剂活性炭纤维(activated carbon fiber,ACF)进行改性,通过SEM、BET和FTIR对改性前后的ACF形貌及结构进行系统表征发现,改性后ACF较改性前表面杂质减少且沟壑更加明显,比表面积提高22%,微孔体积增加5%,含氧官能团(C-O和C=O)明显增多.以水中重金属离子(Zn(II)及Cr(VI))和抗生素磺胺甲恶唑(Sulfamethoxazole,SMX)为目标污染物,研究改性后ACF对目标污染物的吸附(静吸附和电吸附)性能,考察了浓度、pH、外加电压对吸附的影响.结果表明,ACF用量为5 g,电压为1.2 V,Zn(II)、Cr(VI)及SMX浓度均为10mg·L~(-1),Zn(II)溶液pH为5时,ACF吸附水中Zn(II)的最大吸附量为9.25 mg·g~(-1),是静吸附条件的2.15倍;Cr(VI)溶液pH为4时,ACF吸附Cr(VI)的最大吸附量为8.86 mg·g~(-1),是静吸附条件的1.96倍;SMX溶液pH为6时,ACF吸附SMX的最大吸附量为8.32 mg·g~(-1),是静吸附条件的1.84倍.ACF吸附Zn(II)、Cr(VI)及SMX的动力学曲线均符合准二级动力学模型,吸附过程为化学吸附.Freundlich等温模型能更好地描述ACF对Zn(II)、Cr(VI)及SMX的吸附特性,其吸附形式为多分子层吸附.ACF通过电极反接方式进行循环再生,脱附速率快且脱附效果明显,经4次循环再生后,ACF对Zn(II)、Cr(VI)及SMX的去除率均在90%以上.  相似文献   

9.
负载Cr(VI)纳米Fe_3O_4磁性高分子材料的催化性能   总被引:1,自引:0,他引:1  
采用氨基功能化纳米Fe3O4磁性高分子材料(NH2-NMPs)处理含Cr(VI)水溶液,得到了吸附重金属Cr(VI)后回收材料(Cr-NH2-NMPs).通过透射电镜(TEM)、振动样品磁强计(VSM)、热重差热分析(TGA)、X射线粉末衍射(XRD)、红外光谱(FTIR)等对其进行表征.着重研究了以苯甲醇为底物,30%的H2O2为氧化剂,Cr-NH2-NMPs对醇的选择性氧化的催化性能.详细考察了H2O2用量与加入方式、反应时间、反应温度、反应体系中加入酸的种类与用量、催化剂用量、溶剂种类等因素对催化氧化性能的影响,推导出可能的催化机理.结果表明:吸附重金属Cr(VI)后回收材料(Cr-NH2-NMPs)能有效催化苯甲醇氧化至苯甲醛.反应温度为70℃,环己烷为溶剂,在适量质子酸作用下,H2O2与苯甲醇的物质的量比为3.2:1时,苯甲醇的转化率及苯甲醛的选择性均达100%,可以实现"变废为宝"的目的.  相似文献   

10.
李建平  林庆宇  闫研 《化学学报》2008,66(23):2646-2652
借助拟合吸附动力学和等温热力学方程, 研究了湿生超积累植物李氏禾叶细胞干粉对Cr(VI)的吸附性能. 考察了pH值、吸附时间等多种因素对吸附性能的影响; 利用扫描电镜(SEM), X射线能谱(EDS)对李氏禾干粉表面形貌及元素分布进行了表征. 结果表明, 该吸附是单分子吸附的伪二级动力学过程, 吸附过程包含两个步骤: Cr(VI)离子通过静电作用富集在干粉材料表面, 随后干粉表面存在的功能配位官能团会与Cr(VI)发生化学作用. 结合红外光谱图发现对铬起吸附作用的主要是含O, N功能原子的配位官能团, 并且不同功能原子与Cr(VI)的作用方式不同.  相似文献   

11.
Speciation and separation of chromium (VI) and chromium (III) from aqueous solutions were investigated using amino-propyl functionalised mesoporous silica (AP-MCM-41) as an adsorbent. The as-synthesised adsorbent was produced following a simple synthesis method at room temperature prior to template removal using microwave digestion. The maximum adsorption capacity at 111.1mg/g was calculated according to the Langmuir isotherm model, suggesting a 1:1 monolayer adsorption mechanism. Moreover, AP is a simple chelate, yet it can extract Cr (VI) exclusively from solutions containing other mixed metal ions simply by tuning the solution pH. Recovery of Cr (VI) from loaded sorbents is equally easy to perform with 100% extraction efficiencies allowing reuse of the sorbent and recovery of Cr (VI) from aqueous solutions containing a complex mixture of ions. The material would find use in environmental remediation applications, as a selective adsorbent of Cr (VI) or even as a solid-phase extraction stationary phase to remove and pre-concentrate Cr (VI) from aqueous solutions; this study demonstrates enrichment factors of 100 although higher levels are also possible.  相似文献   

12.
Conversion of hexavalent chromium (Cr(Ⅵ)) to trivalent chromium (Cr(Ⅲ)) is an effective way to reduce its environmental risk,especially via photoreduction process.However,over a wide range of p H values,it is still a great challenge to achieve a high removal rate,and the disposal of produced Cr(Ⅲ) should be concerned.In this work,we implemented a high removal rate at 98%for Cr(Ⅵ) and total chromium(Cr(T)) over a wide p H range (4–10) through the synergistic effect of adsorption,photoreduction an...  相似文献   

13.
In this paper, a metakaolin-based mesoporous geopolymer (GP-CTAB) was used as adsorbent for Cu(II) and Cr(VI) through a novel and simple synthetic route using cetyltrimethylammonium bromide (CTAB) as an organic modifier. The application of GP-CTAB for the simultaneous removal of metal anions and cations in aqueous solution was studied for the first time. The results of X-ray diffraction (XRD) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Brunauer, Emmett and Teller (BET), and Barrett, Joyner, and Halenda (BJH) methods indicate that GP-CTAB is still geopolymer even in the presence of quaternary ammonium salt cations. The material was tested to simultaneously adsorb Cu(II) and Cr(VI) from an aqueous solution. The results show that GP-CTAB can adsorb anions simultaneously without sacrificing the adsorption properties of heavy metal cations, which is superior to conventional geopolymers. The maximum theoretical adsorption capacity of GP-CTAB for Cu(II) and Cr(VI) was 108.2 mg/g and 95.3 mg/g in the binary system, respectively. It was also found that the presence of Cu(II) in the solution promoted the adsorption of Cr(VI). Given this characteristic of GP-CTAB, it has shown great application prospects in the prevention and control of heavy metal pollution.  相似文献   

14.
Hexavalent chromium is one of the most toxic heavy metals in aqueous solutions. It has been well documented that the brown seaweed can be used as a promising biosorbent for the sequestration of this heavy metal from wastewater. However, the uptake of Cr(VI) is reportedly a rather slower process; the sorption equilibrium can only be established after a few days, much slower than a few hours for the trivalent chromium ion. In this study, we developed a novel technology of electrochemically assisted biosorption (ECAB) system for the enhancement of the treatment efficiency. It was found through our study that the removal efficiencies of Cr(VI) and total chromium were greatly enhanced by 48.1% and 51.3%, respectively, with the application of -1.0V in the ECAB system. The conversion of Cr(III) due to the electroreduction of Cr(VI) and the higher pH due to the cathodic H(2) evolution created a favorable condition for the uptake of chromium onto the modified seaweed (MSW). The reduction and adsorption of Cr(VI) by MSW was proved to play a minor role in the removal. Both direct electroreduction and indirect electroreduction by atomic H(*) contributed to the reduction of Cr(VI).  相似文献   

15.
This study introduces a sensitive and simple method for selective adsorption of hexavalent chromium, Cr(VI), from water samples prior to its determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The method utilized activated carbon modified with tris(hydroxymethyl)aminomethane (AC-TRIS) as an adsorbent. Surface properties of the new chemically modified AC-TRIS phase were confirmed by Fourier transform infrared (FTIR) spectroscopy. Seven metal ions, including Co(II), Cu(II), Ni(II), Pb(II), Cr(III), Cr(VI), and Fe(III) were evaluated and determined at different pH values (1.0–8.0), except for Fe(III) at pH values (1.0–4.0). Based on the results of the effect of pH on adsorption of these metal ions on AC-TRIS, Cr(VI) was selected for the study of other parameters controlling its maximum uptake on AC-TRIS under batch conditions and at the optimum pH value 1.0. The maximum static adsorption capacity of Cr(VI) onto the AC-TRIS was found to be 43.30 mg g?1 at this pH and after 1 hour contact time. The adsorption data of Cr(VI) were modeled using both Langmuir and Freundlich classical adsorption isotherms. Results demonstrated that the adsorption of Cr(VI) onto AC-TRIS followed a pseudo second-order kinetic model. In addition, the efficiency of this methodology was confirmed by applying it to real environmental water samples.  相似文献   

16.
Biochar (BC) has been widely used as a low-cost adsorbent for the removal of contaminants from water and soil. However, the adsorption ability of BC towards heavy metal oxyanions (e.g., Cr(VI)) is relatively low due to the negatively charged surface of BC. In this study, pristine BC was impregnated with Fe3+ to improve its Cr(VI) adsorption capability. Fe3+-impregnated BC (Fe3+-BC) was successfully synthesized by a simple impregnation method and used for the removal of Cr(VI) from aqueous solution. Various factors affecting the adsorption, such as impregnation ratio, pH, adsorbent dosage, contact time, temperature, and the presence of humic acid, were investigated in detail. Results showed that Fe3+-BC had strong adsorption ability to Cr(VI) with a maximum adsorption capacity of 197.80 mg/g, which were not only significantly higher than that of the pristine BC, but also were superior to many previously reported adsorbents. It was favorable for Cr(VI) adsorption under the condition of acidic and high temperature. The adsorption data obeyed Sips and Langmuir isotherms and the kinetic data were well described by the pseudo-first-order kinetic model. The results herein revealed that the Fe3+-impregnated BC had a good potential as a highly efficient material for adsorption of Cr(VI) from aqueous solution.  相似文献   

17.
Water treatment is an important concern of human societies. Using magnetic nanoparticles as adsorbents for metal removal has been greatly considered due to their particular characteristics such as small sizes, high surface area to volume ratios, and good magnetic properties. In the present study, a modification was implemented in magnetite particles by functionalized carbon nanotubes and carboxylic groups to enhance the performance of magnetite particles in removing hexavalent chromium from water using the adsorption method. The applicability of the nanoadsorbent and magnetic nanoparticles was compared based on adsorption factors affecting the chromium removal including pH, contact time, pollutant concentration, and the adsorbent amount. Properties of the nanocomposites were analyzed by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results show that the highest percentage of Cr (VI) removal for both adsorbents was under acidic ambient conditions and lasted less than 45 minutes. The study of Langmuir, Freundlich, and Temkin isotherms in the prediction of adsorption behavior revealed that the Langmuir model better fitted the adsorption equilibrium data. The kinetic analysis of pseudo-first and second-order equations showed that the pseudo-second-order equation was more suitable for describing the kinetic behavior of data. Moreover, the obtained nanocomposite had a better performance in Cr (VI) removal from water in comparison to magnetite nanoparticles.  相似文献   

18.
Flowerlike α-Fe(2)O(3) nanostructures were synthesized via a template-free microwave-assisted solvothermal method. All chemicals used were low-cost compounds and environmentally benign. These flowerlike α-Fe(2)O(3) nanostructures had high surface area and abundant hydroxyl on their surface. When tested as an adsorbent for arsenic and chromium removal, the flowerlike α-Fe(2)O(3) nanostructures showed excellent adsorption properties. The adsorption mechanism for As(V) and Cr(VI) onto flowerlike α-Fe(2)O(3) nanostructures was elucidated by X-ray photoelectron spectroscopy and synchrotron-based X-ray absorption near edge structure analysis. The results suggested that ion exchange between surface hydroxyl groups and As(V) or Cr(VI) species was accounted for by the adsorption. With maximum capacities of 51 and 30 mg g(-1) for As(V) and Cr(VI), respectively, these low-cost flowerlike α-Fe(2)O(3) nanostructures are an attractive adsorbent for the removal of As(V) and Cr(VI) from water.  相似文献   

19.
水溶液中六价铬在碳纳米管上的吸附   总被引:6,自引:0,他引:6  
裘凯栋  黎维彬 《物理化学学报》2006,22(12):1542-1546
针对用碳纳米管对水溶液中六价铬的吸附净化进行了研究, 考察了溶液浓度、溶液pH值、共存的三价铬离子等因素对吸附行为的影响. 实验结果表明, 碳纳米管在室温下对于六价铬的吸附量随着平衡浓度的增大而升高, 在铬浓度为493.557 mg•L−1时碳纳米管吸附量达到最大值为532.215 mg•g−1; 六价铬的浓度在300~700 mg•L−1的范围内, 碳纳米管对铬的吸附量变化不大;大于700 mg•L−1时, 随着铬的平衡浓度的升高碳纳米管对铬的吸附量降低, 铬浓度为961.074 mg•L−1时, 碳纳米管吸附量降至194.631 mg•g−1. 在pH值为2~7的范围内, 碳纳米管对六价铬的吸附量随着溶液pH值的减小而增大; 而在碱性条件下, pH值对碳纳米管吸附六价铬的影响不大. 溶液中存在三价铬时, 碳纳米管对六价铬的吸附量明显降低, 表明三价铬与六价铬有竞争吸附. 此外, 活性炭的对比吸附实验表明, 在低浓度时, 譬如在六价铬浓度为190 mg•L−1吸附时, 碳纳米管对铬的吸附量约为活性炭的6倍;而在高浓度下, 譬如六价铬浓度为493 mg•L−1时, 碳纳米管对铬的吸附量约为活性炭的2倍.  相似文献   

20.
The adsorption of Cr(VI) and Ni(II) using ethylenediaminetetraacetic acid‐modified diatomite waste (EDTA‐DW) as an adsorbent in single and binary systems was investigated. The EDTA‐DW was characterized using various analytical techniques, including Fourier transform infrared spectroscopy, thermogravimetric analysis, Brunauer–Emmett–Teller measurements, X‐ray diffraction, scanning electron microscopy and energy‐dispersive spectrometry. The adsorption experiment was conducted by varying pH, adsorbent dosage, initial concentration and temperature. In the single system, the sorption data for Cr(VI) fitted the Langmuir isotherm, but the Ni(II) adsorption data fitted well the Freundlich isotherm. The maximum sorption capacity of Cr(VI) and Ni(II) was 2.9 mg g?1 at pH = 3 and 3.64 mg g?1 at pH = 8, respectively. The kinetic data for both Cr(VI) and Ni(II) followed well the pseudo‐second‐order kinetic model in single and binary systems. Meanwhile, the extended Langmuir and extended Freundlich multicomponent isotherm models were found to fit the competitive adsorption data for Cr(VI) and Ni(II). In addition, in the binary system, the existence of Ni(II) hindered the adsorption of Cr(VI), but the presence of Cr(VI) enhanced the removal of Ni(II). This study provides some realistic and valid data about the usage of modified diatomite waste for the removal of metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号