首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
通过共沉淀法制备了Fe3O4纳米粒子,并采用十二烷基磺酸钠(SDS)对纳米粒子进行了表面修饰。FT IR显示SDS修饰到纳米粒子表面,XRD表明纳米粒子为立方晶相,从TEM照片中可看出纳米粒子粒径在10nm左右。纳米粒子耐盐性实验表明,在NaCl、MgCl2、Al2(SO4)3等盐溶液中,超声作用都有利于提高Fe3O4纳米粒子的分散稳定性能,但在不同盐溶液中,纳米粒子的优化超声时间不同。对于NaCl和Al2(SO4)3溶液,纳米粒子稳定分散的最佳超声时间是1h,而对于MgCl2溶液,纳米粒子稳定分散的最佳超声时间是2h。  相似文献   

2.
采用湿化学法制备出稀土Dy3+掺杂的纳米Fe3O4磁粒子,用月桂酸进行了表面修饰,研究了磁粒子在室温和深冷(200.2~56.5 K)状态下的磁性能.经X射线衍射分析发现,适量的Dy3+掺杂不会改变纳米Fe3O4磁粒子的晶型结构.透射电镜(TEM)照片表明,制备出的纳米磁粒子成球性好,且大部分磁粒子的粒径在14 nm左右.通过磁性测量仪、振动样品磁强计(VSM)对磁性能进行了表征.磁化曲线表明掺杂引起磁性能发生变化,磁粒子室温下无剩磁和矫顽力,具有超顺磁性;深冷状态下出现剩磁和矫顽力,且随温度的降低,剩磁和矫顽力增大,不具有超顺磁性,饱和磁化强度略高于室温值.  相似文献   

3.
以FeCl3·6H2O作为单一铁源,1,6-己二胺作为胺化试剂,利用无模板的溶剂热方法制备了胺基功能化的磁性Fe3O4纳米粒子,并利用其键合叶酸分子,制备出表面修饰了叶酸的磁性Fe3O4复合纳米粒子。利用傅里叶变换红外光谱仪、X-射线衍射仪、透射电镜、差热-热重分析仪和振动样品磁强计对所得纳米粒子的形貌、粒径、化学组成和磁性能进行了表征。结果表明,叶酸分子通过化学键牢固键合在磁性纳米Fe3O4粒子表面,叶酸修饰的复合纳米粒子仍然具有良好的磁性能。  相似文献   

4.
制备了一种新型的手性磁纳米复合物(Fe3O4/SiO2/CMCD),并初步研究了其手性拆分能力。正硅酸乙酯与制备的Fe3O4磁纳米粒反应制得Fe3O4/SiO2;通过羧甲基-β-环糊精(CM-β-CD)手性选择剂对Fe3O4/SiO2修饰制得Fe3O4/SiO2/CMCD。采用傅立叶变换红外光谱、透射电子显微镜和振动样品磁强计对手性磁性纳米材料进行结构表征,表明磁性纳米复合物呈球形。同时将制得的手性磁纳米复合物应用于拆分外消旋体DL-色氨酸和酪氨酸,显示其具有较好的手性识别能力。  相似文献   

5.
以自制的Fe3O4磁性纳米材料为核,多巴胺(DA)为表面修饰剂,成功地将2.0 G聚酰胺-胺(PAMAM)树状大分子接枝在Fe3O4磁核表面,制备出了一系列不同DA含量的Fe3O4@PDA@PAMAM磁性纳米吸附材料。采用X射线衍射仪(XRD)、红外光谱仪(IR)、振动样品磁强计(VSM)、透射电子显微镜(TEM)和电感耦合等离子体发射光谱仪(ICP-OES)等分析测试手段对材料组成、微观结构、磁性能和对重金属Cd(Ⅱ)离子的吸附性能进行了测试和表征。研究了修饰剂DA用量对Fe3O4@PDA@PAMAM磁性纳米吸附材料的相组成、微观结构、磁性能和吸附性能的影响。实验结果表明,Fe3O4@PDA@PAMAM磁性纳米吸附材料均呈典型的核-壳结构,材料晶型均呈现尖晶石结构,且壳层厚度随DA用量增加而增厚;材料的饱和磁化强度(Ms)均比Fe3O4的小,且随着DA用量的增加而降低,并且材料的矫顽力(Hc)和剩余磁化强度(Mr)均较低,其磁响应特性适合于做为可回收磁性纳米吸附材料。材料对Cd(Ⅱ)离子的平衡吸附容量随着DA用量的增加呈先增加后减小趋势。当Fe3O4和DA的质量比为8∶4时,吸附剂对Cd(Ⅱ)离子的吸附容量达到最大值165.13 mg·g^-1。  相似文献   

6.
采用化学共沉淀法合成了超顺磁Fe3O4纳米粒子,并采用油酸和油酸钠对其表面进行修饰,制备了可稳定分散于水中的磁流体。以该磁流体为种子,通过一步乳液聚合制备了表面带有功能化羧基的Fe3O4-聚甲基丙烯酸甲酯复合纳米微球(Fe3O4-PMMA)。利用动态光散射、透射电镜观察、傅里叶红外光谱、热失重分析、振动样品磁强计测试等手段表征了复合微球的尺寸、形态、结构、组成和磁性能。结果表明,复合微球的平均直径约120nm,表面带有羧基功能基团,在室温下具有超顺磁性和较高的饱和磁化强度。  相似文献   

7.
采用化学共沉淀方法合成了Fe3O4纳米粒子, 用3-甲基丙烯酰氧基丙基三甲氧基硅烷(3-MPS)对其进行表面接枝修饰, 然后以苯乙烯(St)为单体, 过氧化苯甲酰(BPO)为引发剂, 4-羟基-2,2,6,6-四甲基哌啶-1-氧化物自由基(HTEMPO·)为稳定自由基介质, 采用可控/“活性”自由基聚合技术在修饰后的Fe3O4纳米粒子表面原位引发聚合, 制备了粒径小、分布窄、磁含量高的磁性聚苯乙烯(PS)纳米粒子. X射线衍射(XRD)研究表明, 所合成的Fe3O4粒子为尖晶石结构. 凝胶渗透色谱(GPC)分析表明, 聚苯乙烯的分子量与反应时间呈较好的线性关系. 透射电镜(TEM)观察表明, 所制备的磁性聚苯乙烯纳米粒子的粒径在20-30 nm之间. 热重(TG)分析得到磁性聚苯乙烯纳米粒子的磁含量为62.6%. 振动样品磁强计(VSM)测试结果表明, 磁性聚苯乙烯纳米粒子的比饱和磁化强度为31.7 emu·g-1, 呈现单磁畴结构.  相似文献   

8.
采用2,2,6,6-四甲基-1-哌啶氧化物(TEMPO)的溴盐对化学共沉淀法制备的Fe3O4纳米粒子进行表面修饰,以该粒子为过氧引发剂,苯乙烯(St)、马来酸酐(MA)为单体,采用"活性"/可控自由基聚合技术在粒子表面原位引发聚合,制备了聚(苯乙烯-马来酸酐)/Fe3O4纳米杂化材料,并对纳米Fe3O4及杂化材料进行了FT-IR、XRD、TGA、TEM和GPC表征。结果表明,所制备的纳米杂化材料的平均粒径约为70 nm,磁性粒子表面的聚合物分子链随着聚合时间的增长而增长。振动样品磁强计测试结果显示,在室温、外加磁场下,该纳米杂化材料呈现超顺磁性,饱和磁化强度随着包覆聚合物量的增加而降低。  相似文献   

9.
采用醋酸铵作保护剂在200℃下制备了单分散的400 nm粒径的Fe3O4空心纳米球.通过改变实验条件,对产品的形貌、内部结构和粒径进行了调控合成,得到了粒径范围在100~200 nm的实心纳米球和片形结构的Fe3O4纳米材料.采用SEM、TEM和XRD等对样品进行了表征.结果表明,所得尖晶石型Fe3O4纳米晶粒径均匀,分散度好.利用振动样品磁场计检测了不同形貌样品的磁性能.结果显示,Fe3O4纳米空心球的饱和磁化强度和矫顽力均大于Fe3O4纳米片的对应值.  相似文献   

10.
纳米Fe3O4/聚苯乙烯均匀分散体系的制备及结构   总被引:7,自引:0,他引:7  
用化学共沉淀法制备了Fe3O4纳米颗粒,以油酸为表面活性剂,苯乙烯为载液,制备了稳定的纳米Fe3O4可聚合磁流体,将可聚合磁流体经自由基引发聚合制成纳米Fe3O4/聚苯乙烯均匀分散体系,用WAXRD研究了Fe3O4纳米粒子的结晶情况;用FTIR研究了油酸表面改性前后Fe3O4粒子表面官能团的变化;用TEM研究了Fe3O4颗粒的粒径大小及其在苯乙烯单体和聚苯乙烯中的分散情况;用DSC和TGA研究了纳米Fe3O4/聚苯乙烯均匀分散体系的玻璃化转变温度(Tg)和热稳定性,结果表明,合成的纳米Fe3O4为立方晶型,平均粒径在10nm左右,油酸分子在Fe3O4表面是化学吸附,经表面处理的Fe3O4超细颗粒在苯乙烯和聚苯乙烯基体中分散较均匀.界面粘结较好,含1.8%Fe3O4纳米颗粒的聚苯乙烯的最大热失重温度比聚苯乙烯提高了13K,Fe3O4/聚苯乙烯复合体系的饱和磁化强度σs为17.43emu/g.  相似文献   

11.
采用热还原沉淀法制备了一系列Co~(2+)/Dy~(3+)掺杂的纳米立方MxFe3-xO4磁性颗粒.利用X射线衍射仪、透射电子显微镜和振动样品磁强计研究了不同含量掺杂离子对MxFe3-xO4晶体结构、形貌及磁性的影响.研究发现,掺杂未改变母体的对称性,但母体形貌逐渐从立方体向球体过渡;Co~(2+)和Dy~(3+)的掺杂对于铁氧体磁学性质的影响明显不同,当Co~(2+)实际掺杂量为0.44和Dy~(3+)实际掺杂量为0.05时,MxFe3-xO4立方磁性粒子的饱和磁化强度(Ms)达到最大值,分别为76.65和70.21 A·m2·kg-1.与超顺磁性Fe_3O_4球体相比,高磁性掺杂Fe_3O_4立方体在体外模拟磁流体磁靶向定位实验中显示出较高的滞留率.  相似文献   

12.
采用聚氨酯泡沫为模板,依次修饰羧甲基纤维素钠(CMC)、Fe~(3+),在惰性气氛中高温热处理反应,制备多孔结构的磁性吸油材料.用光学显微镜、扫描电子显微镜、红外吸收光谱、X-射线衍射、接触角等技术对材料进行表征.详细考察了加热反应温度、CMC浓度和Fe~(3+)浓度对材料吸油性能和磁性的影响规律.实验表明,当加热反应温度选择230°C,CMC浓度为0.3 wt%,FeCl_3浓度为0.1 mol/L时,材料吸油性能最佳,对正己烷、二甲苯、环己烷、甲苯、乙酸乙酯、氯仿、机油、原油等有机溶剂和油类分子的吸附容量为10倍左右.磁性多孔材料具有明显的亲油、疏水特性,水的接触角达115.9°,同时材料密度只有0.036g/cm~3,能够漂浮于水面,实现对水面有机溶剂的快速吸附.吸附后的材料在外界磁场控制下,能够通过磁分离方式从水面快速分离.该材料具有良好的循环利用性能,可重复使用20次以上,吸油性能仍然保持良好.  相似文献   

13.
荧光磁性双功能树状分子微球的制备与表征   总被引:1,自引:0,他引:1  
采用化学共沉淀法, 以FeCl3·6H2O和FeSO4·7H2O为原料制备了磁性Fe3O4纳米颗粒, 采用树状大分子对其进行修饰, 然后通过树状大分子具有的大量空腔及末端丰富的氨基, 经吸附、 键合, 与大量巯基乙酸修饰的CdSe/CdS量子点连接, 得到三代具有荧光磁性双功能的树状分子微球, 并对其进行结构表征与性能测试. 结果表明: 三代复合后的微球的平均粒径分别为15, 34和49 nm; 一代荧光磁性微球的发光性能最佳, 其量子产率达24.1%; 零代荧光磁性微球磁性能最优, 其饱和磁化强度为15.96 A·m2/kg. 这种具有荧光和磁性的双功能纳米复合微粒有望在免疫检测、 靶向治疗、 荧光追踪和磁性分离等方面得到广泛应用.  相似文献   

14.
Fe3O4和Zn2+掺杂型Zn1-xFe2+xO4纳米晶的溶剂热合成和电磁性能   总被引:1,自引:0,他引:1  
利用溶剂热法, 在醋酸钠静电保护剂的辅助下, 成功制备出Fe3O4和Zn2+掺杂型Zn0.07Fe2.93O4纳米晶. 利用X射线衍射仪和扫描电子显微镜等对样品的晶体结构、粒径、形貌和化学组成进行了分析. 结果表明, 所得纳米晶的粒径均匀, 形貌为球形, 分散度好; Zn0.07Fe2.93O4纳米晶的平均粒径(70 nm)明显小于Fe3O4(170 nm). 磁性能测量结果表明, 室温下Zn0.07Fe2.93O4的饱和磁化强度(54.2 A·m2·kg-1)小于Fe3O4 (81.6 A·m2·kg-1). 利用矢量网络分析仪对样品的电磁性能和吸波性能进行了研究. 结果表明, Zn2+掺杂型Zn0.07Fe2.93O4纳米晶的吸波性能优于Fe3O4, 前者的最大吸收峰(-19.3 dB)大于后者(-9.8 dB), 且吸收峰低于-10 dB的峰宽达2.5 GHz.  相似文献   

15.
Three metal molybdate hydrates,Fe(H2O)2(MoO4)2·H3O(FeMo),NaCo2(MoO4)2(H3O2)(CoMo)and Mn2(MoO4)3·2H3O(MnMo),were synthesized by the mixed-solvent-thermal methods and characterized by singlecrystal X-ray...  相似文献   

16.
形貌可控纳米SrFe_(12)O_(19)的制备及其磁性能   总被引:1,自引:0,他引:1  
以FeCl3为原料,NaOH作为沉淀剂,通过化学沉淀法,制备出球状的Fe(OH)3中间体,同时以FeCl2为原料,采用化学沉淀法,分别使用NH3·H2O、Na2CO3和NaOH作为沉淀剂制得了不同形貌的中间体,利用柠檬酸法在中间体表面包裹锶的柠檬酸络合物,煅烧后分别制得了球形、纺锤体及棒状的纳米SrFe12O19.利用X射线衍射(XRD)和透射电镜(TEM)等测试手段对不同形貌的纳米SrFe12O19进行表征,并利用振动样品磁强计(VSM)对磁性能进行研究.结果表明:在用化学沉淀-柠檬酸法制备SrFe12O19的过程中,铁盐的种类以及沉淀剂的碱性对中间体的物相和SrFe12O19的形貌有着至关重要的影响.当原料为Fe3+时,制得了球形的纳米SrFe12O19;当原料为Fe2+时,利用碱性不同的沉淀剂可制得不同形貌的纳米SrFe12O19.随着沉淀剂碱性的增加,所得SrFe12O19的长径比增加,形貌各向异性增加.SrFe12O19的矫顽力(Hc)主要取决于粒子的各向异性,各向异性越大,矫顽力越大,饱和磁化强度(Ms)随着样品的各向异性的增加也有所增加,以FeCl2为原料,NaOH作为沉淀剂时制得的棒状SrFe12O19的矫顽力和饱和磁化强度最大分别为458.2kA·m-1和64.2A·m2·kg-1.  相似文献   

17.
芳杂环聚西佛碱Fe~(2+)配合物的合成及磁性能   总被引:2,自引:0,他引:2  
以 2 ,2′ 二氨基 4 ,4′ 联噻唑 (DABT) ,2 ,6 二乙酰基吡啶 (DAP)及苯二甲醛为原料合成了三个新型结构的芳杂环聚西佛碱 (PBTAP ,PBTMP ,PBTPP) ,并制备了其相应的Fe2 + 配合物 .利用FTIR确定了聚合物及其配合物的结构 ,借助多功能材料物理特性测量系统 (PPMS :PhysicalPropertyMeasurementSystem)测定配合物的磁性能 ,测试结果表明这三个聚合物的Fe2 + 配合物都是有机软磁体 ,具有相对较高的磁饱和强度 (Ms) ,其中PBTAP Fe2 + 的磁饱和强度为 6 2emu g ,顺磁居里温度 (Tp)达 88K ,且具有S型的磁滞回线 ,此结果表明此配合物在低温下是有机软铁磁体 .  相似文献   

18.
The structure of the title complex [Fe2(μ-O)(bpb)2]n (bpb 2=1,2-bis(pyridine-2carboxamido) benzenate) has been characterized by single-crystal X-ray diffraction analysis.The complex (C36 H24 Fe2N8O5,Mr=760.33) crystallizes in the monoclinic space group P2 1/c with a=8.4615(17),b=33.704(7),c=11.173(2),β=91.12(3)o,V=3185.7(11)3,Z=4,D c=1.585 g/cm 3,μ(MoK)=0.970 mm-1,F(000)=1552,R int=0.0381,the final R=0.0454 and wR=0.1114.The magnetic susceptibilities of the complex have been examined in the temperature range of 2-300 K.The magnetic data were fitted to give the parameters of J d=-77.7(9) and J c=-11.5(6) cm-1.  相似文献   

19.
A pseudo-octahedral complex of high-spin Fe(II), bis(2,2'-bi-2-thiazoline)bis(isothiocyanato)iron(II), which has a cis-FeN'2N4 chromophore, has been investigated by high-frequency, high-field electron paramagnetic resonance (HFEPR). Complementary M?ssbauer and DC magnetic susceptibility studies were also performed. HFEPR spectra of powder samples were recorded at frequencies up to 700 GHz and over a magnetic field range of 0-25 T. Analysis of the field-frequency data set yields the following set of spin Hamiltonian parameters for S = 2: D = +12.427(12) cm-1, E = +0.243(3) cm-1; gx = 2.147(3), gy = 2.166(3), gz = 2.01(1). The parameters are analyzed by use of a simple crystal-field model. This study represents the first precise determination by HFEPR of spin Hamiltonian parameters in six-coordinate high-spin Fe(II) and indicates the applicability of HFEPR to the study of high-spin Fe(II) in coordination complexes and biological model compounds.  相似文献   

20.
氢还原下铁钼催化剂的表面性质   总被引:1,自引:0,他引:1  
用XPS对H_2还原下的铁钼催化剂的表面性质进行了研究。实验表明:H_2还原使表面钼离子由Mo~(6+)还原为Mo~(5+)和Mo~(4+),并与Fe~(3+)作用氧化为Mo~(6+);Fe~(3+)则由于与Mo~(5+)和Mo~(4+)作用以及H_2还原而变为Fe~(2+),从而形成了一个没有O_2存在,仅有H_2作用下的Mars-Krevelen氧化还原循环过程。在催化剂表面上生成的FeMoO_4,其Mo~(6+)的3d3/2和3d5/2的结合能值比Fe_2(MoO_4)_3中的Mo~(6+)的3d能级结合能值低。Mo(或Mo和Fe)离子键合的O~(2-)与H_2作用生成的Mo(Fe)-OH,其Os结合能的测定值低于键合于Mo(Fe)离子中的O~(2-)的Os结合能值,并且该结合能峰由于-OH间的相互作用结合成的水的脱附而消失。此外.给出了还原过程中H_2与催化剂表面O~(2-)相互作用的反应图式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号