首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We will provide an overview of the synthesis, structures, chemical and physical properties of novel iron oxides bearing FeO(4) square planar coordination, such as SrFeO(2) and Sr(3)Fe(2)O(5). The preparation of these materials relies on topotactic low-temperature reduction using metal hydrides. For instance, a simple 3D perovskite structure SrFeO(3) converts to a 2D structure SrFeO(2)via SrFeO(2.5). SrFeO(2) shows a remarkable stability against temperature and chemical substitution (for both A- and B-sites) and also tolerates distortions of square planes toward tetrahedra to adapt different A sites. Such structural stability and flexibility arise from strong covalent interactions not only through the in-plane Fe-O-Fe superexchange interactions but also through the out-of-plane Fe-Fe direct exchange interactions, and explains why SrFeO(2) exhibits magnetic order far beyond room temperature. The application of pressure on SrFeO(2) and Sr(3)Fe(2)O(5) further enhances the Fe-Fe direct exchange interactions and eventually induces striking transitions at around 34 GPa: spin-state transition from S = 2 to S = 1, insulator-to-metal transition, and antiferro-to-ferromagnetic transition. The high mobility of oxide ions at relatively low temperatures, during the reduction and reoxidation reaction process would offer an important challenge to tailor and design new solid oxide fuel cells/membranes toward lowering working temperatures.  相似文献   

2.
Pressure-induced structural phase transition of spin ladder compound SrCu2O3 was investigated by synchrotron X-ray powder diffraction with a diamond anvil cell (DAC). The change was characterized by a buckling of the Cu2O3 plane in the rung direction of the ladder. The structure of the high-pressure phase was found to be essentially the same as that of CaCu2O3. Application of an external pressure of 3.4 GPa therefore affected the structure in the same manner that the chemical (internal) pressure does.  相似文献   

3.
A complete structural, calorimetric, and magnetic characterisation of the 2D coordination spin crossover polymer [Fe(pmd)(2)[Cu(CN)(2)](2)] is reported. The crystal structure has been investigated below room temperature at 180 K and 90 K, and at 30 K after irradiating the sample at low temperature with green light (lambda = 532 nm). The volume cell contraction through the thermal spin transition is only 18 A(3) which is lower than the usually observed value of around 25-30 A(3) while the average Fe-N bond distances decrease by the typical value of about 0.19 A. The structural data of the irradiated state indicate that the high spin state is well induced since the cell parameters are consistent with the data at 180 K. Calorimetric and photo-calorimetric experiments have also been performed. The entropy content for the thermal spin transition, DeltaS = 35-37 J mol(-1) K(-1) lies in the lowest range of the typical values and correlates with the low volume cell contraction. The combination of the crystallographic and calorimetric data predicts, in accordance with a mean-field approach, a linear pressure dependence of the critical temperature with a slope of 302 K GPa(-1). Magnetic measurements under pressure reveal an anomalous behaviour since the critical temperature and hysteresis do not change up to 0.22 GPa but an apparent linear dependence is obtained for higher pressures (up to 0.8 GPa) with a slope two times higher than the mean-field estimation.  相似文献   

4.
The rock salt (B1) structure of binary oxides or chalcogenides transforms to the CsCl (B2) structure under high pressure, with critical pressures P(s) depending on the cation to anion size ratio (R(c)/R(a)). We investigated structural changes of A(2)MO(3) (A = Sr, Ca; M = Cu, Pd) comprising alternate 7-fold B1 AO blocks and corner-shared MO(2) square-planar chains under pressure. All of the examined compounds exhibit a structural transition at P(s) = 29-41 GPa involving a change in the A-site geometry to an 8-fold B2 coordination. This observation demonstrates, together with the high pressure study on the structurally related Sr(3)Fe(2)O(5), that the B1-to-B2 transition generally occurs in these intergrowth structures. An empirical relation of P(s) and the R(c)/R(a) ratio for the binary system holds well for the intergrowth structure also, which means that P(s) is predominantly determined by the rock salt blocks. However, a large deviation from the relation is found in LaSrNiO(3.4), where oxygen atoms partially occupy the apical site of the MO(4) square plane. We predict furthermore the occurrence of the same structural transition for Ruddlesden-Popper-type layered perovskite oxides (AO)(AMO(3))(n), under higher pressures. For investigating the effect on the physical properties, an electrical resistivity of Sr(2)CuO(3) is studied.  相似文献   

5.
The luminescence from Eu(2+) ions in MF2 (M = Ca, Sr, Ba) fluorides has been investigated under the pressure range of 0-8 GPa. The emission band originating from the 4f(6)5d(1) --> 4f(7) transition of Eu(2+) ions in CaF2 and SrF2 shows the red-shift as increasing pressure with pressure coefficients of -17 meV/GPa for CaF2 and -18 meV/GPa for SrF2. At atmospheric pressure, the emission spectrum of BaF2:Eu(2+) comprises two peaks at 2.20 and 2.75 eV from the impurity trapped exciton (ITE) and the self-trapped exciton (STE), respectively. As the pressure is increased, both emission peaks shift to higher energies, and the shifting rate is slowed by the phase transition from the cubic to orthorhombic phase at 4 GPa. Due to the phase transition at 4-5 GPa pressure, the ITE emission disappears gradually, and the STE emission is gradually replaced by the 4f(6)5d(1) --> 4f(7) transition of Eu(2+). Above 5 GPa, the pressure behavior of the 4f(6)5d(1) --> 4f(7) transition of Eu(2+) in BaF2:Eu(2+) is the same as the normal emission of Eu(2+) in CaF2 and SrF2 phosphors.  相似文献   

6.
The effect of pressure on the dinuclear spin crossover material [{Fe(bpp)(NCS)(2)}(2)(4,4'-bipy)]·2MeOH (where bpp = 2,6-bis(pyrazol-3-yl)pyridine and 4,4'-bipy = 4,4'-bipyridine, 1) has been investigated with single crystal X-ray diffraction and Raman spectroscopy using diamond anvil cell techniques. The very gradual pressure-induced spin crossover occurs between 7 and 25 kbar, and shows no evidence of crystallographic phase transitions. The pressure-induced spin transition leads to a complete LS state which is not thermally accessible. This structural evolution under pressure is in stark contrast to the previously reported thermal spin crossover behaviour, in which a symmetry-breaking, purely structural phase transition results in only partial conversion to the low spin state. This observation is attributed to the symmetry-breaking phase transition becoming unfavourable under pressure.  相似文献   

7.
Molecular structures of 12 porphyrin analogues, Fe(III)(EtioP)X(1(a)-1(d)), Fe(III)(EtioCn)X(2(a)-2(d)), and Fe(III)(Etio-Pc)X(3(a)-3(d)), where X = F (a), Cl (b), Br (c), and I (d), are determined on the basis of X-ray crystallography. Combined analyses using M?ssbauer, (1)H NMR, and EPR spectroscopy as well as SQUID magnetometry have revealed that 3(d) exhibits a quite pure S = 3/2 spin state with a small amount of an S = 5/2 spin admixture. In contrast, all the other complexes show the S = 5/2 spin state with a small amount of the S = 3/2 spin admixture. The structural and spectroscopic data indicate a strong correlation between the spin states of the complexes and the core geometries such as Fe-N bond lengths, cavity areas, and DeltaFe values.  相似文献   

8.
Angle-dispersive X-ray diffraction measurements have been performed in acanthite, Ag(2)S, up to 18 GPa in order to investigate its high-pressure structural behavior. They have been complemented by ab initio electronic structure calculations. From our experimental data, we have determined that two different high-pressure phase transitions take place at 5 and 10.5 GPa. The first pressure-induced transition is from the initial anti-PbCl(2)-like monoclinic structure (space group P2(1)/n) to an orthorhombic Ag(2)Se-type structure (space group P2(1)2(1)2(1)). The compressibility of the lattice parameters and the equation of state of both phases have been determined. A second phase transition to a P2(1)/n phase has been found, which is a slight modification of the low-pressure structure (Co(2)Si-related structure). The initial monoclinic phase was fully recovered after decompression. Density functional and, in particular, GGA+U calculations present an overall good agreement with the experimental results in terms of the high-pressure sequence, cell parameters, and their evolution with pressure.  相似文献   

9.
High-throughput first-principle calculations are implemented to study the structural, mechanical, and electronic properties of cubic XTiO3 (X = Ca, Sr, Ba, Pb) ceramics under high pressure. The effects of applied pressure on physical parameters, such as elastic constants, bulk modulus, Young's modulus, shear modulus, ductile-brittle transition, elastic anisotropy, Poisson's ratio, and band gap, are investigated. Results indicate that high pressure improves the resistance to bulk, elastic, and shear deformation for XTiO3 ceramics. Pugh's ratios B/G reveal that CaTiO3 and PbTiO3 ceramics are ductile, but SrTiO3 and BaTiO3 ceramics are brittle under the ground state. The brittle-to-ductile transition pressures are 24.26 GPa for SrTiO3 and 43.23 GPa for BaTiO3. Under high pressure, the strong anisotropy promotes the cross-slip process of screw dislocations, and then enhances the plasticity of XTiO3 ceramics. Meanwhile, XTiO3 (X = Ca, Sr, Ba) is intrinsically an indirect-gap ceramic, but PbTiO3 is a direct-gap ceramic. High pressure increases the band gap of XTiO3 (X = Ca, Sr, Ba) ceramic, but decreases that of PbTiO3 ceramic. This work is helpful for designing and applying XTiO3 ceramics under high pressure.  相似文献   

10.
A new family of cyanide-based spin-crossover polymers with the general formula {Fe(5-Br-pmd)z[M(CN)x]y} [M=AgI (1), AuI (2), NiII (3), PdII (4), PtII (5); 5-Br-pmd=5-bromopyrimidine; z=1 or 2, x=2 or 4, and y=2 or 1] have been synthesized and characterized using single-crystal X-ray diffraction (XRD), X-ray powder diffraction (XRPD), magnetic susceptibility measurements, and differential scanning calorimetry (DSC). At 293 K, compound 1 presents the monoclinic space group C2/c, whereas at 120 K, it changes to the monoclinic space group P21/c. At 293 K, the crystal structure of 1 displays an uninodal three-dimensional network whose nodes, constituted of FeII, lie at the inversion center of an elongated octahedron. The equatorial bond lengths are defined by the N atoms of four [AgI(CN)2]- groups belonging to two crystallographically nonequivalent AgI atoms, Ag(1) and Ag(2). They are shorter than those of the axial positions occupied by the N atoms of the 5-Br-pmd ligands. The Fe-N average bond length of 2.1657(7) A is consistent with a high-spin (HS) state for the FeII ions. At 120 K, the crystal structure changes refer mainly to the FeII environment. There are two crystallographically independent FeII ions at this temperature, Fe(1) and Fe(2), which adopt the HS and low-spin (LS) states, respectively. The average Fe-N bond length for Fe(1) [2.174(5) A] and Fe(2) [1.955(5) A] agrees well with the reported magnetic data at this temperature. The spin transition of the FeII ions labeled as Fe(1) is found to be centered at Tc downward arrow=149 K and Tc upward arrow=167 K and accompanied by a drastic change of color from orange (HS) to red (LS). Magnetic susceptibility measurements under applied hydrostatic pressure performed on 1 have shown a linear displacement of the transition to higher temperatures while the hysteresis width remains unaltered in the interval of pressures of 105 Pa to 0.34 GPa. A further increase of the pressure induces the spin transition in the Fe(2) ions, which is completely accomplished at 1.12 GPa (T1/2=162 K). Compounds 1 and 2 are isostructural, but 2 does not exhibit spin-transition properties; the FeII centers remain in the HS state in the temperature range investigated, 5-300 K. Compounds 3-5 are not similar or isostructural with 1. A two-dimensional structure for 3-5 has been proposed on the basis of analytical data and the XRPD patterns. Compounds 3-5 undergo first-order spin transition where the critical temperatures for the cooling (Tc downward arrow) and warming (Tc upward arrow) modes are 170 and 180 K (3), 204 and 214 K (4), and 197 and 223 K (5), respectively. It is worth mentioning the color change from yellow to orange observed in 3-5 upon spin transition. The thermodynamic parameters associated with the spin transition estimated from DSC measurements are DeltaH=6 kJ mol(-1) (1), 11 kJ mol(-1) (3), 16 kJ mol(-1) (4), and 16 kJ mol(-1) (5) and DeltaS=38 J K(-1) mol(-1) (1), 62 J K(-1) mol(-1) (3), 76 J K-1 mol(-1) (4), and 81 J K(-1) mol(-1) (5).  相似文献   

11.
The recently discovered SrFeO2 prepared by a soft chemical route from a precursor SrFeO3 has the "infinite layer" (IL) structure with an unprecedented FeO4 square-planar coordination. We show that the IL structure has significant solubility to yield Sr1-xCaxFeO2 (0 相似文献   

12.
Two new isostructural iron(II) spin‐crossover (SCO) framework (SCOF) materials of the type [Fe(dpms)2(NCX)2] (dpms=4,4′‐dipyridylmethyl sulfide; X=S ( SCOF‐6(S) ), X=Se ( SCOF‐6(Se) )) have been synthesized. The 2D framework materials consist of undulating and interpenetrated rhomboid (4,4) nets. SCOF‐6(S) displays an incomplete SCO transition with only approximately 30 % conversion of high‐spin (HS) to low‐spin iron(II) sites over the temperature range 300–4 K (T1/2=75 K). In contrast, the NCSe? analogue, SCOF‐6(Se) , displays a complete SCO transition (T1/2=135 K). Photomagnetic characterizations reveal quantitative light‐ induced excited spin‐state trapping (LIESST) of metastable HS iron(II) sites at 10 K. The temperature at which the photoinduced stored information is erased is 58 and 50 K for SCOF‐6(S) and SCOF‐6(Se) , respectively. Variable‐pressure magnetic measurements were performed on SCOF‐6(S) , revealing that with increasing pressure both the T1/2 value and the extent of spin conversion are increased; with pressures exceeding 5.2 kbar a complete thermal transition is achieved. This study confirms that kinetic trapping effects are responsible for hindering a complete thermally induced spin transition in SCOF‐6(S) at ambient pressure due to an interplay between close T1/2 and T(LIESST) values.  相似文献   

13.
The crystal structure of [Fe(bt)2(NCS)2] (A) was determined by X-ray diffraction at 293 and at 150 K in order to analyze the structural changes associated with the spin transition. The space group is P1 with Z = 2 at both temperatures. Lattice constants are as follows: a = 8.5240(4), b = 11.0730(6), c = 12.5300(8) at 293 K and a = 8.1490(4), b = 11.4390(5), c = 12.1270(6) at 150 K. The iron(II) atom lies at the center of a distorted [FeN6] defined by two bt ligands arranged in a cis conformation. The two remaining coordination positions are occupied by two isothiocyanate anions. The average bond lengths of 2.159(4) A (293 K) and 1.951(2) A (150 K) clearly indicate the change in spin configuration. The trigonal distortion parameter phi has a value of 9.6 degrees and 5.5 degrees at 293 and 150 K, respectively. For A, DeltaV = DeltaV(SCO) = 28 A(3) per formula unit and is accompanied by a hysteresis of 10 K. chi(M)T vs T curves at atmospheric pressure for A show an abrupt spin transition with Tc downward arrow = 176 K and Tc upward arrow = 187 K. The thermodynamic parameters associated with the spin transition are DeltaH = 8.4 +/- 0.4 kJ mol(-1) and DeltaS = 46.5 +/- 3 J K mol(-1). The thermal dependence of the magnetic susceptibility at different pressures, 0.1-0.91 GPa, points out an unusual behavior, which can only be understood in terms of a crystallographic phase transition or a change in the bulk modulus of the complex. Polymorph B crystallizes in the C2/c space group with an average Fe-N bond length of 2.168(2) A and phi = 14.7 degrees at 293 K. B remains in the HS configuration even at pressures of 1.06 GPa.  相似文献   

14.
The complex Mn2(H2O)(OAc)4(tmeda)2 (tmeda = N,N,N',N'-tetramethylethylenediamine) is a model for the active site of hydrolase enzymes containing acetate-bridged dimanganese cores. The two high-spin Mn(II) ions are antiferromagnetically coupled, as determined by previous magnetic susceptibility studies (Yu, S.-B; Lippard, S. J.; Shweky, I; Bino, A. Inorg. Chem. 1992, 31, 3502-3504) to yield a spin "ladder" with total spin S = 0, 1, 2, ..., 5 in increasing energy. In this study, the complex was characterized by Q-band and X-band EPR spectroscopy in frozen solution. Analysis of the temperature dependence of these EPR spectra indicates that the primary spectral contribution is from the S = 2 manifold. The EPR spectra were simulated using a full spin Hamiltonian for this manifold of a coupled spin system, which provided the fit parameters J = -2.9 cm-1, g = 2.00, and D2 = -0.060 +/- 0.003 cm-1. An additional multiline EPR signal is observed which is proposed to arise from the total spin S = 5/2 ground state of a Mn(II) trimer of the type Mn3(OAc)6(tmeda)2.  相似文献   

15.
The electrical resistivity and X-ray oscillation photograph measurements for an MMX-chain complex, Pt2(dtp)4I (dtp = C2H5CS2-), under high pressure were performed. We observed the most stable metallic phase (TMI = 70 K, under 2.2 GPa) in the 1-D purely d-electronic conductors and pressure-induced metal-insulator transition including the structural phase transition at 3.0 GPa.  相似文献   

16.
A 2D iron(II) spin crossover complex, [FeII(HLH,Me)2](ClO4)2.1.5MeCN (1), was synthesized, where HLH,Me = imidazol-4-yl-methylidene-8-amino-2-methylquinoline. 1 showed a gradual spin transition between the HS (S = 2) and LS (S = 0) states from 180 to 325 K within the first warming run from 5 to 350 K, in which 1.5MeCN is removed, and there was an abrupt spin transition at T1/2 downward arrow = 174 K in the first cooling run from 350 to 5 K. Following the first cycle, the compound showed an abrupt spin transition at T1/2 upward arrow = 185 K and T1/2 downward arrow = 174 K with 11 K wide hysteresis in the second cycle. The crystal structures of 1 were determined at 296 (an intermediate between the HS and LS states) and 150 K (LS state). The structure consists of a 2D extended structure constructed of both the bifurcated NH...O- hydrogen bonds between two ClO4- ions and two neighboring imidazole NH groups of the [FeII(HLH,Me)2]2+ cations and the pi-pi interactions between the two quinolyl rings of the two adjacent cations. Thermogravimetric analysis showed that solvent molecules are gradually eliminated even at room temperature and completely removed at 369 K. Desolvated complex 1' showed an abrupt spin transition at T1/2 upward arrow = 180 K and T1/2 downward arrow = 174 K with 6 K wide hysteresis.  相似文献   

17.
The authors have previously proposed a theoretical model for exotic spin alignment in organic molecular assemblages: The alternating chain of organic biradicals in a singlet (Sb=0) ground state and monoradicals with S=1/2 has a ferrimagnetic ground state for the whole chain, which has been termed generalized ferrimagnetism. An important feature of the generalized ferrimagnetic spin alignment has been found in the deviation of the expectation value Sb2 of the biradical spin from zero. Even a triplet-like spin state Sb2=2 (Sb=1) has been predicted in the theoretical calculations. In this study, we have found experimental evidence for the pseudo-triplet state appearing in the ground-state singlet biradical of a real open-shell compound. At first, we have demonstrated from theoretical calculations that the singlet biradical has Sb2=2 (Sb=1) in a molecular pair with an S=1 metal ion as well as with the S=1/2 monoradical. The pseudo-triplet state of the biradical affords a singlet state of the whole system of the biradical-metal ion pair, which is readily detectable in experiments for verifying the theoretical prediction. As a model compound for the biradical-metal ion pair, a transition metal complex, [(bnn)(Ni(hfac)2)1.5(H2O)] (1), has been synthesized from a nitronyl nitroxide-based ground-state singlet biradical bnn and Ni(hfac)2. From X-ray crystallographic analyses, the compound contains a molecular pair of bnn and Ni(hfac)2, which serves as a model system under the above theoretical studies. It has been found from the analysis of the temperature dependence of magnetic susceptibility that the bnn-Ni(hfac)2 pair has the singlet (S=0) ground state. The singlet ground state of the pair results from an antiparallel coupling of the pseudo-triplet of the biradical and the S=1 spin on the Ni ion. The pseudo-triplet state in the ground-state singlet biradical has thus been verified experimentally, which is crucially important to realize the generalized ferrimagnetic spin alignment.  相似文献   

18.
A new polymorph of SrS(3) was obtained by a reaction of SrS and S with an atomic ratio of Sr:S = 1:5 under a pressure of 5 GPa at 1200 degrees C. It crystallized in a tetragonal unit cell with a = 6.708(1) A, c = 3.942(1) A, and V = 177.36(6) A(3). It was isotypic with BaS(3), and contained S3(2-) polysulfide ions. The product obtained from the high-pressure synthesis contained an amorphous component. It was highly deliquescent and formed a yellowish solution. A new layered polysulfide, Sr(2)(OH)(2)S(4).10H(2)O, crystallized in the solution. The sulfide belonged to a triclinic space group of P (No. 2) with lattice constants of a = 5.9107(5) A, b = 7.8682(6) A, c = 9.4134(6) A, alpha = 75.639(6) degrees, beta = 73.824(3) degrees, gamma = 71.639(3) degrees, V = 392.83(5) A(3), and Z = 1. Each Sr ion was coordinated with one OH ligand and eight H(2)O ligands. Six H(2)O ligands out of the eight were bridging ligands to form two-dimensional [Sr(2)(OH)(2)(H(2)O)(10)(2+)]( infinity ) cationic layers, between which S4(2-) tetrapolysulfide ions were situated. The S4(2-) anion had a coplanar configuration with a dihedral angle of 180.0 degrees. The stability of S4(2-) anions having different conformations was discussed from a viewpoint of ab initio MO calculations on changing the dihedral angles of S4(2-).  相似文献   

19.
Theoretical investigations concerning possible calcium sulfate, CaSO(4), high-pressure polymorphs have been carried out. Total-energy calculations and geometry optimizations have been performed by using density functional theory at the B3LYP level for all crystal structures considered. The following sequence of pressure-driven structural transitions has been found: anhydrite, Cmcm (in parentheses the transition pressure) → monazite-type, P2(1)/n (5 GPa) → barite-type, Pnma (8 GPa), and scheelite-type, I4(1)/a (8 GPa). The equation of state of the different polymorphs is determined, while their corresponding vibrational properties have been calculated and compared with previous theoretical results and experimental data.  相似文献   

20.
The synthesis and characterization of new two-dimensional (2D) cyanide-bridged iron(II)-gold(I) bimetallic coordination polymers formulated, {Fe(3-Xpy)2[Au(CN)2]2} (py = pyridine; X = F (1), Cl (2), Br (3), and I (4)) and the clathrate derivative {Fe(3-Ipy)2[Au(CN)2]2}.1/2(3-Ipy) (5), are reported. The iron(II) ion lies in pseudoctahedral [FeN6] sites defined by four [Au(CN)2](-) bridging ligands and two 3-Xpy ligands occupying the equatorial and axial positions, respectively. Although only compounds 2 and 4 can be considered strictly isostructurals, all of the components of this family are made up of parallel stacks of corrugated {Fe[Au(CN)2]2}n grids. The grids are formed by edge sharing of {Fe4[Au(CN)2]4} pseudosquare moieties. The stacks are constituted of double layers sustained by short aurophilic contacts ranging from 3.016(2) to 3.1580(8) A. The Au...Au distances between consecutive double layers are in the range of 5.9562(9)-8.790(2) A. Compound 5, considered a clathrate derivative of 4, includes one-half of a 3-Ipy molecule per iron(II) atom between the double layers. Compound 1 undergoes a half-spin transition with critical temperatures Tc downward arrow = 140 K and Tc upward arrow = 145 K. The corresponding thermodynamic parameters derived from differential scanning calorimetry (DSC) are Delta H = 9.8 +/- 0.4 kJ mol(-1) and Delta S = 68.2 +/- 3 J K mol(-1). This spin transition is accompanied by a crystallographic phase transition from the monoclinic P2(1)/c space group to the triclinic P1 space group. At high temperatures, where 1 is 100% high-spin, there is only one crystallographically independent iron(II) site. In contrast, the low temperature structural analysis shows the occurrence of two crystallographically independent iron(II) sites with equal population, one high-spin and the other low-spin. Furthermore, 1 undergoes a complete two-step spin transition at pressures as high as 0.26 GPa. Compounds 2- 4 are high-spin iron(II) complexes according to their magnetic and [FeN6] structural characteristics. Compound 5, characterized for having two different iron(II) sites, displays a two-step spin transition with critical temperatures of Tc(1) = 155 K, Tc(2) downward arrow = 97 K, and Tc(2) upward arrow = 110 K. This change of spin state takes place in both sites simultaneously. All of these results are compared and discussed in the context of other {Fe(L) x [M(I)(CN)2]} coordination polymers, particularly those belonging to the homologous compounds {Fe(3-Xpy)2[Ag(CN)2]2} and their corresponding clathrate derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号