首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The thermal behavior and kinetic parameters of the exothermic decomposition reaction of N‐N‐bis[N‐(2,2,2‐tri‐nitroethyl)‐N‐nitro]ethylenediamine in a temperature‐programmed mode have been investigated by means of differential scanning calorimetry (DSC). The results show that kinetic model function in differential form, apparent activation energy Ea and pre‐exponential factor A of this reaction are 3(1 ‐α)2/3, 203.67 kJ·mol?1 and 1020.61s?1, respectively. The critical temperature of thermal explosion of the compound is 182.2 °C. The values of ΔS ΔH and ΔG of this reaction are 143.3 J·mol?1·K?1, 199.5 kJ·mol?1 and 135.5 kJ·mol?1, respectively.  相似文献   

2.
In the title compound, [CoCl2(C11H15N3O2)], the CoII ion is five‐coordinated in a strongly distorted square‐pyramidal arrangement, with one of the two Cl atoms located in the apical position, and the other Cl atom and the three N‐donor atoms of the tridentate methyloxime ligand located in the basal plane. The non‐H atoms, except for the Cl atoms, lie on a mirror plane. The two equatorial Co—Noxime distances are almost equal (mean 2.253 Å) and are substanti­ally longer than the equatorial Co—Npyridine bond [2.0390 (19) Å]. The structure is stabilized by intra‐ and inter­molecular C—H⋯Cl contacts, which involve one of the methyl C atoms belonging to the methyloxime groups.  相似文献   

3.
In the title compound, [CuCl2(C11H15N3O2)], the CuII ion is five‐coordinated in a strongly distorted trigonal–bipyramidal arrangement, with the two methyl­oxime N atoms located in the apical positions, and the pyridine N and the Cl atoms located in the basal plane. The two axial Cu—N distances are almost equal (mean 2.098 Å) and are substantially longer than the equatorial Cu—N bond [1.9757 (15) Å]. It is observed that the N(oxime)—M—N(pyridine) bond angle for five‐membered chelate rings of 2,6‐diacetyl­pyridine dioxime complexes is inversely related to the magnitude of the M—N(pyridine) bond. The structure is stabilized by intra‐ and inter­molecular C—H⋯Cl hydrogen bonds which involve the methyl H atoms, except for one of the two acetyl­methyl groups.  相似文献   

4.
The crystal structure of the title compound, [tBu2P(S)NiPr]2Ni or [Ni(C11H25NPS)2], shows a dihedral angle of 82.27 (6)° between the two Ni/S/N planes and thus a distorted tetrahedral arrangement of the NiN2S2 chromophore. The structure is in accordance with the observed paramagnetism and is contrasted with the oxo analogue, which is planar but also paramagnetic.  相似文献   

5.
Synthesis, Structures, EPR and ENDOR Investigations on Transition Metal Complexes of N, N‐diisobutyl‐N′‐(2, 6‐difluoro)benzoyl selenourea The synthesis and the structures of the NiII and PdII complexes of the ligand N, N‐diisobutyl‐N′‐(2, 6‐difluoro)benzoylselenourea HBui2dfbsu are reported. The ligands coordinate bidentately forming bis‐chelates. The structure of the ligand could not be obtained, however, the structure of its O‐ethyl ester will be reported. Attempts to prepare the CuII complex result only in the formation of oily products. However, the CuII complex could be incorporated into the corresponding NiII and PdII compounds. From this diamagnetically diluted powder and single‐crystal samples were obtained being suitable for EPR‐ENDOR measurements. We report X‐ and Q‐band EPR investigations on the systems [Cu/Ni(Bui2dfbsu)2] and [Cu/Pd(Bui2dfbsu)2] as well as a single‐crystal X‐band EPR study for [Cu/Ni(Bui2dfbsu)2]. The obtained 63, 65Cu and 77Se hyperfine structure tensors allow a determination of the spin‐density distribution within the first coordination sphere. In addition, orientation selective 19F Q‐band pulse ENDOR investigations on powder‐samples of [Cu/Ni(Bui2dfbsu)2] have been performed. The hyperfine structure tensors of two intramolecular 19F atoms could be determined. According to the small 19F couplings only a vanishingly small spin‐density of < 1 % was obtained for these 19F atoms.  相似文献   

6.
In the crystal structure of the title compound, bis­(2‐amino­pyrimidine‐κN1)bis­[6‐meth­yl‐1,2,3‐oxathia­zin‐4(3H)‐one 2,2‐dioxide(1−)‐κ2N3,O4]copper(II), [Cu(C4H4NO4S)2(C4H5N3)2], the first mixed‐ligand complex of acesulfame, the CuII centre resides on a centre of symmetry and has an octa­hedral geometry that is distorted both by the presence of four‐membered chelate rings and by the Jahn–Teller effect. The equatorial plane is formed by the N atoms of two amino­pyrimidine (ampym) ligands and by the weakly basic carbonyl O atoms of the acesulfamate ligands, while the more basic deprotonated N atoms of these ligands are in the elongated axial positions with a strong misdirected valence. The crystal is stabilized by pyrimidine ring stacking and by inter­molecular hydrogen bonding involving the NH2 moiety of the ampym ligand and the carbon­yl O atom of the acesulfamate moiety.  相似文献   

7.
The title compounds, C15H16ClN2O+·Br·1.5H2O and C15H16BrN2O+·Br·1.5H2O, are isomorphous. The benzene ring is oriented nearly normal to the pyridine ring in both compounds. The molecular packing is mainly influenced by intermolecular O—H⋯O and O—H⋯Br interactions, as well as weak intramolecular C—H⋯O interactions. The H2OBr units form an extended water–bromide chain, with a bridging water mol­ecule on a twofold axis.  相似文献   

8.
In the title complex, [Pd(C12H8FN4O2)2(C5H5N)2] or trans‐[Pd(FC6H4N=N—NC6H4NO2)(C5H5N)2], the Pd atom lies on a centre of inversion in space group P. The coordination geometry about the Pd2+ ion is square planar, with two deprotonated 3‐(2‐fluoro­phenyl)‐1‐(4‐nitro­phenyl)­triazenide ions, FC6H4N=N—NC6H4NO2?, acting as monodentate ligands (two‐electron donors), while two neutral pyridine mol­ecules complete the metal coordination sphere. The whole triazenide ligand is not planar, with the largest interplanar angle being 16.8 (5)° between the phenyl ring of the 2‐­fluorophenyl group and the plane defined by the N=N—N moiety. The Pd—N(triazenide) and Pd—N(pyridine) distances are 2.021 (3) and 2.039 (3) Å, respectively.  相似文献   

9.
The title compound was prepared by reaction of N, N‐dimethyldithiocarbamate sodium with l‐bromo‐l‐(4‐methoxyphenylcarbonyl)‐2‐(1, 2, 4‐triazole‐l‐yl) ethane. Its crystal structure has been determined by X‐ray diffraction analysis. The crystal belongs to triclinic with space group Pī, a = 0.7339(2) nm, b = 1.1032(2) nm, c = 1.1203(2) nm, a = 90.27(3)°, β = 102.03(3)°, γ = 104.91(3)°, Z=2, V = 0.8556(3) nm3, Dc = 1.360 g/cm3, μ =0.325 mm?1, F(000)=368, final R1 =0.0475. The planes of 4‐methoxybenzyl group and triazole ring are nearly perpendicular to each other. The dihedral angle is 83.97°. There is an obvious π‐π stacking interaction between the molecules in the crystal lattice. The results of biological test show that the title compound has fungicidal and plant growth regulating activities.  相似文献   

10.
The title compound, [Li(C12H21NSi)(C6H16N2)], is an intermediate in the synthesis of the corresponding organometallic compounds. The mol­ecule has an unusual C—Si—N—Li four‐membered heterocycle which adopts a folded conformation, with the coordination around the Li, N, C and Si atoms being distorted tetrahedral. Its structure is strongly supported by 1H NMR, 13C NMR and 13C–1H correlation spectra. The compound has potential for application in the synthesis of other novel organometallic compounds.  相似文献   

11.
In the title compounds, {2,2′‐[2,2‐di­methyl‐1,3‐propane­diyl­bis­(nitrilo­methyl­idyne)]­diphenolato‐κ4N,N′,O,O′}nickel(II), [Ni(C19H20N2O2)], and {2,2′‐[2,2‐di­methyl‐1,3‐propane­diyl­bis­(nitrilo­methyl­idyne)]­diphenolato‐κ4N,N′,O,O′}copper(II), [Cu(C19H20N2O2)], the NiII and CuII atoms are coordinated by two iminic N and two phenolic O atoms of the N,N′‐bis­(salicyl­idene)‐2,2‐di­methyl‐1,3‐propane­diaminate (SALPD2?, C17H16N2O22?) ligand. The geometry of the coordination sphere is planar in the case of the NiII complex and distorted towards tetrahedral for the CuII complex. Both complexes have a cis configuration imposed by the chelate ligand. The dihedral angles between the N/Ni/O and N/Cu/O coordination planes are 17.20 (6) and 35.13 (7)°, respectively.  相似文献   

12.
The title compound, [Hg(C6H4NO2)I(C6H5NO2)], has twofold symmetry along the Hg—I bond. The HgII ion coordinates one I atom [at 2.6045 (4) Å], two N and two O atoms [at 2.298 (3) and 2.481 (2) Å] from one picolinate ion, and one picolinic acid mol­ecule in a very irregular trigonal–bipyramidal coordination. The single hydr­oxy H atom required for chemical neutrality is both statistically (by crystal symmetry) and structurally disordered, and is involved in an inter­molecular O—H⋯O hydrogen bond [O⋯O = 2.455 (4) Å], connecting the mol­ecules into one‐dimensional infinite chains along the [101] direction.  相似文献   

13.
In the crystal structure of the title compound {systematic name: bis­[6‐methyl‐1,2,3‐oxa­thia­zin‐4(3H)‐one 2,2‐dioxide(1−)‐κ2N3,O4]bis­(3‐meth­yl­pyridine)copper(II)}, [Cu(C4H4NO4S)2(C6H7N)2], the CuII centre resides on a centre of symmetry and has an octa­hedral geometry that is distorted both by the presence of four‐membered chelate rings and because of the Jahn–Teller effect. The equatorial plane is formed by the N atoms of two methyl­pyridine ligands and by the more basic O atoms of the acesulfamate ligands, while the weakly basic N atoms of these ligands are in elongated axial positions with a misdirected valence. The crystal is stabilized by two inter­molecular C—H⋯O inter­actions involving the methyl and CH groups, and the sulfonyl O atoms of the acesulfamate group.  相似文献   

14.
段宗炼  曾正志 《中国化学》2007,25(12):1919-1923
盐酸- N1,NN', N'1-二甲双胍(HDMBG∙HCl)是临床广泛应用的降血糖药物,用于非胰岛素依赖型糖尿病的治疗。本文合成了三氯三(N5-苯甲酰-N1', N'1-二甲双胍)合钕 (Nd(BDMBG)3Cl3)和一氯二(N5-邻羧基苯甲酰- N1,NN', N'1-二甲双胍)合钕(Nd(CDMBG)2Cl)两种固态配合物,并通过元素分析、ICP、IR、UV、荧光光谱等表征了它们的化学组成和结构。糖尿病小鼠模型和ESR谱测定结果显示,几种化合物的降血糖作用及对人工脂质体膜超氧自由基的清除率呈现如下顺序:Nd(SDMBG)3 [)三(N5-水杨酰-N1,N1-二甲双胍)合钕] >Nd(CDMBG)2Cl » HDMBG·HCl > Nd(BDMBG)3Cl3,表明芳酰基邻位取代基的不同对配合物的降血糖作用和对O2-的清除作用具有重要影响。  相似文献   

15.
The title di­sulfonyl‐stabilized pyridinium yl­ide, C5H5N+–C(SO2C6H5)2 or C18H15NO4S2, contains a near planar NCS2 core. The structure suggests that the formal negative charge of the yl­ide C atom is delocalized to the S atoms rather than the N atom. Structural features of pyridinium yl­ides are briefly discussed.  相似文献   

16.
The 1:1 adduct of N,N′‐bis(2‐chlorobenzylidene)ethylenediamine (cb2en) with copper(I) chloride proves to be an ionic compound with CuI‐centred cations and anions, [Cu(C16H14Cl2N2)2][CuCl2]·CH3CN. In the cation, the CuI atom has a flattened tetrahedral coordination geometry, with a small bite angle for the chelating ligands, which form a double‐helical arrangement around the metal centre. The anion is almost linear, as expected. The packing of the cations involves intermolecular π–π interactions, which lead to columns of translationally related cations along the shortest unit‐cell axis, with anions and solvent molecules in channels between them.  相似文献   

17.
A group of 2‐(N,N‐diethylamino)‐4‐aminoquinazoline derivatives have been synthesized in the reaction of N1,N1‐diethyl‐N2‐arylchlorocarboxyamidines with cyanamide in the presence of T1Cl4 as a catalyst. Such quinazolines decompose into the corresponding quinazolones in dilute aqueous HC1 solutions at higher temperature. Hydrolysis rates of 2‐(N,N‐diethylamino)‐4‐aminoquinazoline and 2‐(N,N‐diethylamino)‐4‐(N,N‐dimethylamino)‐quinazoline have been determined to observe the influence of substituents at the 4‐amino group upon the hydrolysis. pKa values have been also determined for these compounds and analyzed in conjunction with the Hammett σ constants.  相似文献   

18.
A novel PVC‐based membrane sensor based on 2,6‐(p‐N,N‐dimethylaminophenyl)‐4‐phenylthiopyrylium perchlorate (DAPP) is described. The electrode exhibits a sub‐Nernstian response to 1‐(beta‐hydroxyethyl)‐2‐methyl‐5‐nitroimidazole (metronidazol) over a relatively wide concentration range (1.0 × 10?1 to 1.0 × 10?5 M) with a detection limit of 8.0 × 10?6 M. The best performance was obtained with the membrane containing 30% poly (vinyl chloride), 50% dibutyl phthalate, 7% DAPP and 13% oleic acid. It has a fast response time (< 30 s) and can be used for at least four weeks without any major deviation. The proposed sensor revealed very good selectivity for metronidazole over a wide variety of common cations, anions and amino acids and could be used in the pH range of 6.0–7.5. It was successfully used for direct determination of metronidazole in an oral synthetic antiprotozoal as an antibacterial agent, in metronidazole tablets, and metronidazole injections and metronidazole gels.  相似文献   

19.
In the title complex, [Ag(NO3)(C9H7N3OS)]n, η1112‐bridging 2‐(pyridin‐4‐ylsulfinyl)pyrimidine (pypmSO) ligands with opposite chiralities are alternately arranged to link the AgI cations through two N atoms and one sulfinyl O atom of each ligand, leading to an extended zigzag coordination chain structure along the [01] direction. An FT–IR spectroscopic study shows a decreased stretching frequency for the η1O‐bonded S=O group compared with that of the free ligand. The parallel chains are arranged and interconnected via O(S=O)...π(pyridine/pyrimidine) and C—H(pyridine)...O(NO3) interactions to furnish a layer almost parallel to the ac plane. Along the b axis, the layers are stacked and stabilized through anion(NO3)...π(pyrimidine) interactions to form a three‐dimensional supramolecular framework. The ligand behaviour of the new diheterocyclic sulfoxide and the unconventional O(S=O)...π(pyridine/pyrimidine) and anion(NO3)...π(pyrimidine) interactions in the supramolecular assembly of the title complex are presented.  相似文献   

20.
In the title compound, [CuCl2(C9H12N2O)], the CuII atom is coordinated by two Cl anions and two N atoms of one O‐ethyl 3‐methyl­pyridine‐2‐carboximidic acid mol­ecule in a slightly distorted square‐planar geometry, with Cu—N distances of 2.0483 (17) and 1.9404 (18) Å, and Cu—Cl distances of 2.2805 (10) and 2.2275 (14) Å. In addition, each CuII atom is connected by one Cl anion and the CuII atom from a neighbouring mol­ecule, with Cu⋯Cl and Cu⋯Cu distances of 2.9098 (13) and 3.4022 (12) Å, respectively, and, therefore, a centrosymmetric dimer is formed. Adjacent mol­ecular dimers are connected by π–π stacking inter­actions between pyridine rings to form a zigzag mol­ecular chain. The mol­ecular chains are also enforced by N—H⋯Cl and C—H⋯Cl inter­actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号