首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
建立了同时测定饮料中5种食用合成色素的在线固相萃取-高效液相色谱-紫外检测(Online-SPE-HPLC-UV)方法。饮料样品用水稀释并经0.45μm微孔滤膜过滤后,在线固相萃取柱(Acclaim 120 C18)净化,反相C18分析柱分离,梯度洗脱,紫外检测器检测。结果表明:5种食用合成色素在0.5~20 mg/L浓度范围内线性关系良好,相关系数(r2)均大于0.999 9,检出限为0.02~0.08 mg/kg,3个水平下的加标回收率为94.5%~103.0%,相对标准偏差为0.4%~2.7%。该研究为快速准确地分离测定饮料中的食用合成色素提供了有效方法。  相似文献   

2.
以不同氢键供体和氢键受体合成的10种疏水型低共熔溶剂(DES)作为溶剂提取食品中合成色素,辅助液-液微萃取前处理技术,建立同时测定10种水溶性色素的高效液相色谱方法。结果表明:由四丁基氯化铵和辛酸合成的低共熔溶剂提取色素的效果最好,在最佳萃取条件(含水量0,摩尔比1∶3,提取剂用量500μL,提取温度20℃、振摇时间20 min)下,色素的回收率达83.5%~119.8%,仪器检出限为11.3~500.0μg/L。应用建立的方法测定汽水和糖果中的色素,赤藓红加标回收率在40%左右,其余色素加标回收率在77.8%~102.7%之间,相对标准偏差小于5.3%。  相似文献   

3.
制备了一种新型固相萃取柱填料金属有机框架材料(MOFs)UiO-66-NH2,建立了固相萃取/高效液相色谱-串联质谱(SPE/HPLC-MS/MS)测定饮料和配制酒中新红的方法。通过扫描电子显微镜、红外光谱和氮气吸附-脱附等温线等手段表征材料的结构与吸附性能。采用Waters AtlantisTM T3(150 mm×2.1 mm,3μm)色谱柱,以10 mmol/L乙酸铵水溶液和甲醇为流动相进行分离,多反应监测(MRM)模式进行质谱检测。结果表明,在最佳萃取条件下,新红在0.05~10 mg/L范围内呈良好的线性关系,相关系数(r2)为0.998,检出限(LOD)和定量下限(LOQ)分别为0.05 mg/L和0.15 mg/L。回收率为87.8%~107%,相对标准偏差(RSD,n=6)为1.9%~11%,表明该方法具有较好的准确度和精密度。开发的基于UiO-66-NH2的固相萃取柱可作为一种高质量的吸附材料用于饮料和配制酒中新红的检测。  相似文献   

4.
采用氯化胆碱和苯酚合成低共熔溶剂(DES),以其为萃取剂建立了分散液液微萃取(DLLME)结合超高效液相色谱-串联质谱(UPLC-MS/MS)测定马肉中10种非甾体抗炎药的方法。优化了提取溶剂、萃取剂、分散剂和盐的加入量等条件,最佳萃取条件为:以氯化胆碱和苯酚(比例为1∶2)合成的低共熔溶剂为萃取剂,马肉样品经5 mL含10 mmol/L抗坏血酸的20 mmol/L醋酸铵缓冲液(乙酸调至pH 3.5)提取,加入1.0 g氯化钠、0.8 mL萃取剂和0.8 mL分散剂,旋涡混合1 min,离心后取上清液经超高效液相色谱-串联质谱测定,外标法定量。结果显示,10种非甾体抗炎药在各自质量浓度范围内呈良好线性关系,相关系数(r2)均大于0.996,检出限为0.05~2.0 μg/kg,定量下限为0.10~5.0 μg/kg,平均回收率为73.5%~94.6%,相对标准偏差(RSD)为1.1%~8.1%。该方法操作简单、准确高效、绿色环保,可用于马肉中非甾体抗炎药的测定。  相似文献   

5.
采用低共熔溶剂微萃取-高效液相色谱法测定烟叶中β-胡萝卜素的含量。以薄荷醇和月桂酸组成(两者的物质的量之比为2∶1)的低共熔溶剂为萃取剂,低共熔溶剂的用量为400μL,萃取时间为3.0min。以Agilent Zorbax SB-C18色谱柱为分离柱,以甲醇-异丙醇(70+30)混合液为流动相,在检测波长448nm处进行测定。β-胡萝卜素的质量浓度在0.050~9.000mg·L-1内与其对应的峰面积呈线性关系,检出限(3S/N)为40μg·L-1。方法用于烟叶样品的分析,加标回收率为70.2%~112%,测定总量的相对标准偏差(n=5)为1.5%~3.7%。  相似文献   

6.
建立了一种基于低共熔溶剂(DESs)的液液微萃取-高效液相色谱联用(LLME-HPLC)技术用于测定食用油中的双酚A(BPA)的方法,对比了3种DES和甲醇、乙二醇对食用油中BPA的萃取效率,研究了温度、萃取时间和萃取剂体积对萃取效率的影响。结果表明:氯化胆碱/乙二醇组成的DES萃取率最高;低共熔溶剂用量100μL,萃取温度25℃,萃取时间5 min时,萃取效率最高。BPA的检测限和定量限分别为0.10 mg/L和0.50 mg/L,加标回收率在86.3%~109.9%范围内,RSD小于6%。方法可用于食用油中BPA的检测。  相似文献   

7.
《分析试验室》2021,40(9):1004-1009
采用高密度疏水性低共熔溶剂涡旋辅助-分散液液微萃取高效液相色谱-荧光(VA-DLLMEHPLC-FLD)检测黄酒中黄曲霉毒素(AFB1,AFB2,AFG1和AFG2)。选用樟脑(氢键受体)和对氯苯酚(氢键供体)以1:1的摩尔比合成高密度疏水性低共熔溶剂。优化了萃取剂的种类、HBA与HBD摩尔比、萃取剂的用量、涡旋时间、离心时间和p H等参数以实现最佳提取效率。在最佳萃取条件下,AFG2,AFG1,AFB2和AFB1的线性范围在0.76~450 ng/L之间(R2≥0.9993),检出限为0.23~0.91 ng/L,富集倍数为164~248。日内和日间精密度均不大于4.7%。方法已成功应用于黄酒中黄曲霉毒素的检测。  相似文献   

8.
建立了超高效液相色谱-串联质谱法(UPLC-MS/MS)同时测定饮料金属罐内壁涂层中11种双酚类物质的迁移量。样品经不同条件的迁移试验后,取浸泡液进行过滤,以Agilent Eclipse XDB-C_(18)色谱柱分离,以不同体积比的乙酸铵溶液和甲醇的混合液为流动相进行梯度洗脱,在电喷雾离子源(ESI)和多反应监测(MRM)正负离子模式下进行分析。结果表明,在优化的实验条件下,11种双酚类物质的线性关系良好,相关系数(R~2)均大于0.99,方法检出限为0.04~4.0μg/kg,定量限为0.1~13.3μg/kg,在低、中、高3个加标水平下的回收率为75.1%~107.9%,相对标准偏差(n=6)为1.7%~5.9%。该方法适合于饮料金属罐内壁涂层中11种双酚类物质迁移量的日常检测。  相似文献   

9.
建立超高效液相色谱-串联质谱(UPLC-MS/MS)快速测定水产品中三聚氰胺残留的方法.采用ACQUITY UPLC BEH HILIC色谱柱(100 mm×2.1 mm, 1.7 μm),流动相为乙腈-0.5 mmol/L乙酸铵溶液(0.1%甲酸),流速为0.3 mL/min.采用电喷雾质谱检测,以正离子模式5 min完成质谱分析.实验结果表明,三聚氰胺在水产品中的检测限为0.05 mg/kg,在0.05~0.50 mg/kg添加水平时的加标回收率为63%~90%,测定结果的相对标准偏差均小于7.2%(n=6).  相似文献   

10.
建立了一种基于低共熔溶剂的旋涡辅助分散液-液微萃取和高效液相色谱连用检测水样中臧红T和胭脂红染料的方法。制备了一类分别由苄基三乙基溴化铵、苄基三丁基溴化铵、苄基三乙基氯化铵或苄基三丁基氯化铵(氢键受体)和正辛酸(氢键供体)组成的新型疏水性低共熔溶剂。最佳萃取条件为:选取苄基三丁基氯化铵和正辛酸(摩尔比为1∶2)制备的低共熔溶剂为萃取剂,萃取剂用量为75μL,萃取时间为1 min,溶液pH=7,NaCl浓度为3 mg/mL。在最优化条件下,检测臧红T和胭脂红的线性范围为4.8~1000 ng/mL;相关系数(R^(2))分别为0.9981和0.9987;检出限分别为1.5和1.8 ng/mL;定量限均为4.8 ng/mL。将该方法应用于实际水样中臧红T和胭脂红的测定,加标回收率为88.5%~113.6%,相对标准偏差均低于8.8%。  相似文献   

11.
高分子的良溶剂和不良溶剂的两种定义辩析   总被引:1,自引:0,他引:1  
介绍了目前国际学术界存在的对高分子溶液体系的溶剂优劣性的两种判断标准 ,即相互作用参数χ=1 /2和χ=0 ,前者基于混合自由能 ,后者基于混合热。作者阐明了其倾向于采用后者的观点 ,而后者在目前国内所有高分子物理学教科书中均未被介绍。  相似文献   

12.
聚苯乙烯 聚丁二烯 聚苯乙烯 (SBS)嵌段共聚物所兼具的高弹性与热塑性来源于其独特的微观相分离结构 ,其形态结构与性能的关系长期以来一直倍受人们的关注 .对于这种微相分离体系 ,除了传统意义上的良溶剂 (对两种嵌段均具有良好的溶解性 ,又称非选择性溶剂 )与不良溶剂外 ,还存在着对两种嵌段中的一种溶解性较好 ,对另一种溶解性较差的选择性溶剂[1,2 ].在溶液浇铸成膜过程中 ,不同溶剂与组成共聚物的两种嵌段的相互作用参数的差异将导致溶液中大分子构象的差异以及微观相分离过程的差异 ,从而影响浇铸膜的形态以及性能[3].本文首先利用…  相似文献   

13.
孙国祥  孙毓庆 《色谱》1995,13(2):80-84
 提出了溶剂和溶剂系统向量参数表示方法,给出了正相及反相二元溶剂系统Q值参数表。得到经验公式:R_f=a+blnQ+cQ。  相似文献   

14.
The solvent molecular distribution significantly affects the behavior of the solute molecules and is thus important in studying many biological phenomena. It can be described by the solvent molecular density distribution, g, and the solvent electric dipole distribution, p. The g and p can be computed directly by counting the number of solvent molecules/dipoles in a microscopic volume centered at r during a simulation or indirectly from the mean force F and electrostatic field E acting on the solvent molecule at r, respectively. However, it is not clear how the g and p derived from simulations depend on the solvent molecular center or the solute charge and if the g(F) and p(E) computed from the mean force and electric field acting on the solvent molecule, respectively, could reproduce the corresponding g and p obtained by direct counting. Hence, we have computed g, p, g(F), and p(E) using different water centers from simulations of a solute atom of varying charge solvated in TIP3P water. The results show that g(F) and p(E) can reproduce the g and p obtained using a given count center. This implies that rather than solving the coordinates of each water molecule by MD simulations, the distribution of water molecules could be indirectly obtained from analytical formulas for the mean force F and electrostatic field E acting on the solvent molecule at r. Furthermore, the dependence of the g and p distributions on the solute charge revealed provides an estimate of the change in g and p surrounding a biomolecule upon a change in its conformation.  相似文献   

15.
Microcrystalline cellulose (avicel) is treated in hot-compressed aprotic solvents,sulfolane and 1,4-dioxane,using a batch-type reaction system with a molten tin bath in a range from 290 to 390℃. The corresponding densities of the solvent are 0.25-1.26 g/cm3 and 0.21-1.03 g/cm3 for sulfolane and 1,4-dioxane,respectively. As a result,in both solvents,more than 90% of cellulose is found to be de-composed to the solvent-soluble portion in which levoglucosan is the main component with the high-est yield of about 35% on original cellulose basis. The decomposition rate to levoglucosan is,however,faster in sulfolane than in 1,4-dioxane,while levoglucosan is more stable in 1,4-dioxane. In addition,its yield is found to be solvent-density dependent to be highest around 0.4-0.5 g/cm3 for both solvents. To elucidate these decomposition behaviors,the results obtained in this study with aprotic solvents are compared with protic solvents such as water and methanol in previous works.  相似文献   

16.

Stable crystalline phosphorus ylides were obtained in excellent yields from the 1:1:1 addition reaction between triphenylphosphine and dialkyl acetylenedicarboxylates in the presence of strong NH-acids, such as benzotriazole, 5-methylbenzotriazole, 5-chlorobenzotriazole, pyrrole, 2-acetylpyrrole, pyrrole-2-carboxaldehyde, 4-nitro-acetanilide, 4-methoxyacetanilide, 4-bromoacetanilide, 4-methylacetanilide, 2-methyl-acetanilide, and 2,6-dimethylacetanilide. These stable ylides exist in a solution as a mixture of two geometrical isomers as a result of the restricted rotation around the carbon–carbon partial double bond resulting from the conjugation of the ylide moiety with the adjacent carbonyl group.  相似文献   

17.
The enthalpy of solution (Delta(solv)H(m)) and solubility of 1,4-naphthoquinone in CO(2) + n-pentane were measured at 308.15 K in the critical region of the binary fluid. In order to study the effect of phase behavior of the mixed solvent on Delta(solv)H(m), the experiments were carried out in the supercritical (SC) and subcritical region of the binary solvent. The density of the mixed solvent in different conditions was determined. The isothermal compressibility (K(T)) of the mixed solvent, and the partial molar volume (V(n-pentane)) of n-pentane in the solution were calculated. It was demonstrated that the Delta(solv)H(m) was negative in all conditions. Delta(solv)H(m) is nearly independent of pressure or density in all the solvents in a high-density region, in which compressibility of the solvent is very small; this indicates that the intermolecular interaction between the solvent and the solute is similar to that for liquid solutions. It is very interesting that Delta(solv)H(m) in the mixed SC fluid differs from the Delta(solv)H(m) in mixed subcritical fluids. The absolute value of Delta(solv)H(m) in the mixed SC fluid is close to that in pure SC CO(2) in the high-density region, and is much lower than that in pure SC CO(2) in the low-density region. In the mixed subcritical fluids, the Delta(solv)H(m) is also close to that in the pure CO(2) in the high-density region. However, at the same density, the absolute value of Delta(solv)H(m) in the binary subcritical fluid is larger than that in pure CO(2) in the high-compressible region of the mixed solvent. The main reason for this is that the degree of clustering in the SC solutions is small at the density in which the degree of clustering is large in the subcritical solutions. It can be concluded that solubility enhancement by n-pentane in the mixed SC fluid is entropy driven. In contrast, the solubility enhancement by n-pentane in subcritical fluids is enthalpy driven. The intermolecular interaction in the SC solutions and subcritical solutions can be significantly different even if their densities are the same.  相似文献   

18.
Study of the extraction of ten different coumarins (unsubstituted, 6-methyl-, 7-methyl-, 4-hydroxy-, 7-hydroxy-, 7-hydroxy-4-methyl-, 7-methoxy-, 7-amino-4-methyl-, 7-diethyl-amino-4-methyl-, and 3-carboxy-) with nine organic solvents shows that the percentage extraction is generally high. Cyclohexanone and heptane were found to be, respectively, the most and least effective extracting solvents for the compounds under study. The results are discussed in terms of the effect of different solvent polarity parameters on the extraction process.  相似文献   

19.
《印度化学会志》2021,98(11):100210
Organic solvents have been of great importance for many chemical synthesis, storage and separation processes. The industries and research laboratories are heavily dependent on organic solvents in bulk; are highly volatile, lipophilic, toxic and causes a number of issues to the human health and the environmental fitness. Neoteric solvents have been proposed as a better substitute to these harmful organic solvents, and scientists have come up with several neoteric solvents in the last three decades, to name a few: ionic liquids (ILs), switchable solvents, bio-based solvents and deep eutectic solvents (DESs). These neoteric solvents attract a great deal of interest from the scientific community due to plenty of possibilities, therefore, they have huge impact and novel studies are reported quite frequently on the same. In this review, we intend to focus to brief on deep eutectic solvents, about their properties, synthesis, promising applications, and how they gradually emerged from ILs and later stood out as a different class of neoteric solvent, which overcomes many shortcomings of ILs. DESs are possibly receptive synthetic compounds and their relationship based on the hydrogen bond donor or acceptor restricts their reactivity and allow to explore in different disciplines of science.  相似文献   

20.
Summary Four different methods of calculation of retention in ternary mobile phases were compared and it was found that the simple calculation based only on two values of the capacity factors (one for each binary system that composes the ternary mobile phase) provides the accuracy of prediction that is, at least, comparable to the other methods of calculation that require a large number of preliminary experiments. The deviations from ideal behaviour in ternary solvent mixtures are discussed; some sources of errors can be avoided, at least partially, using binary systems of adequate compositions for preparation of ternary mobile phases. Several examples show the comparison of calculated and experimental selectivities in ternary solvent systems. A simple calculation can be used for rapid selection of an adequate ternary (or more complex) mobile phase, if it is necessary to achieve the separation of a given sample mixture.Presented at the 14th International Symposium on Chromatography London, September, 1982  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号