首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 661 毫秒
1.
The pH effect of inclusion of methylene blue (MB) in cyclic methacrylic acid oligomer (CMAA) with degree of polymerization 14, which was a novel cationic host material with pKa 4.83, was investigated in methanol. The self‐diffusion coefficients of MB in methanol at pH 7.0 and 4.0 with and without CMAA were measured by 1H‐NMR spectrometry with pulsed‐field‐gradient stimulated‐echo pulse (PGSE) analysis. At both pH values, the addition of CMAA to MB solution resulted in the complex formation between CMAA and MB. MB was included in CMAA in methanol at a wide range of pH. The molar fraction of the slow diffusion component corresponding to the complex increased by varying the pH from 7.0 to 4.0. Then, SiO–CMAA was synthesized by immobilization of CMAA on silica gel beads. The time dependence of adsorption of MB to SiO–CMAA was investigated by UV–Vis spectrometry. At pH 7.0, the absorbance of MB–methanol solution gradually decreased by the addition of SiO–CMAA. The absorbance drastically decreased on varying the pH from 7.0 to 4.0, and the absorbance quickly increased on varying the pH from 4.0 to 7.0. The inclusion of MB in CMAA was fast and reversible on changing the pH of the solution. CMAA was the novel pH sensitive host material. Inclusion of MB in CMAA enhanced at pH 4.0 rather than at pH 7.0. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
梁晓东  黄荣清  骆传环  肖炳坤  赵焱 《化学学报》2006,64(11):1179-1182
建立了无损伤性31P NMR研究细胞内物质的实验方法, 并对人宫颈癌细胞(Hela)的31P NMR谱中含磷小分子代谢物的谱峰进行了分析; 细胞内无机磷(Pi)的化学位移对pH非常敏感, 通过测定其化学位移可间接确定细胞内的pH, Hela细胞内Pi峰的化学位移为5.88±0.01 (n=3), 计算得到细胞内 pH值为7.05±0.01; 通过测量Hela细胞的31P NMR谱中ATP的α磷和β磷及γ磷的化学位移差值, 得出Hela细胞内Mg2+与ATP结合的复合物MgATP和整个ATP量的比值, 计算得到Hela细胞内游离Mg2+浓度为(253.3±0.13) mmol/L (n=3), 与其它分析方法相比, 31P NMR测定细胞内游离Mg2+浓度具有对细胞样品无损伤的优点.  相似文献   

3.
The conformation of the complex of [ATP-Mg]2+ is studied by 1H, 15N and 31P NMR on ATP in the absence and presence of MgCl2 in a wide pH range from 1 to 10. 1H-15N HMBC experiments show a large change in the 15N chemical shift of N1 up to 10 ppm around pH 3.7, suggesting that there is a strong interaction between Mg2+ and N1 of ATP at this pH. 31P NMR indicates that at pH 3.7 the phosphate chain also binds Mg2+. 1H diffusion measurements imply that the [ATP-Mg]2+ complex involves only one ligand and one metal ion.  相似文献   

4.
Synthesis and characterization of three new polyamine receptors, composed of a cyclam unit (cyclam=1,4,8,11‐tetraazacyclotetradecane) linked by a 2,6‐dimethylpyridinyl spacer to the linear polyamines 1,4,8,11‐tetraazaundecane ( L1py ), 1,4,7‐triazaheptane ( L2py ), and to a quaternary ammonium group ( L3 py+ ), are reported. All receptors form highly charged polyammonium cations at neutral pH, suitable for anion recognition studies. ATP recognition was analyzed by using potentiometric, calorimetric, 1H and 31P NMR measurements in aqueous solution. All receptors form 1:1 adducts with ATP in aqueous solution, stabilized by charge–charge and hydrogen‐bonding interactions between their ammonium groups and the anionic triphosphate chain of ATP. The binding ability of the three receptors for ATP increases in the order of L3 py+ < L2py < L1py . These adducts are stabilized by largely favourable entropic contributions, probably due to the large desolvation of the host and guest species upon complexation. The sequence observed for the binding affinity is explained in terms of the different ability of the three receptors to wrap around the phosphate chain of ATP.  相似文献   

5.
The complexes of adriamycin–d‐(TGATCA)2 and 4′‐epiadriamycin–d‐(CGATCG)2 are studied by one‐ and two‐dimensional 31P nuclear magnetic resonance spectroscopy (NMR) at 500 MHz in the temperature range 275–328 K and as a function of drug to DNA ratio (0.0–2.0). The binding of drug to DNA is clearly evident in 31P? 31P exchange NOESY spectra that shows two sets of resonances in slow chemical exchange. The phosphate resonances at the intercalating steps, T1pG2/C1pG2 and C5pA6/C5pG6, shift downfield up to 1.7 ppm and that at the adjacent step shift downfield up to 0.7 ppm, whereas the central phosphate A3pT4 is relatively unaffected. The variations of chemical shift with drug to DNA ratio and temperature as well as linewidths are different in each of the two complexes. These observations reflect change in population of BI/BII conformation, stretching of backbone torsional angle ζ, and distortions in O? P? O bond angles that occur on binding of drug to DNA. To the best of our knowledge, there are no solution studies on 4′‐epiadriamycin, a better tolerated drug, and binding of daunomycin or its analogue to d‐(TGATCA)2 hexamer sequence. The studies report the use of 31P NMR as a tool to differentiate various complexes. The specific differences may well be the reasons that are responsible for different antitumor action of these drugs due to different binding ability and distortions in DNA. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
We conducted 31P NMR kinetic studies and 1H-diffusion measurements on myosin-catalyzed hydrolysis of adenosine triphosphate (ATP) under varied conditions. The data elucidate well the overall hydrolysis rate and various factors that significantly impact the reaction. We found that the enzymatic hydrolysis of ATP to adenosine diphosphate (ADP) was followed by ADP hydrolysis, and different nucleotides such as ADP and guanosine triphosphate acted as competitors of ATP. Increasing ATP or Mg2+ concentration resulted in decreased hydrolysis rate, and such effect can be related to the decrease of ATP diffusion constants. Below 50 °C, the hydrolysis was accelerated by increasing temperature following the Arrhenius’ law, but the hydrolysis rate was significantly lowered at higher temperature (~60 °C), due to the thermal–denaturation of myosin. The optimal pH range was around pH 6–8. These results are important for characterization of myosin-catalyzed ATP hydrolysis, and the method is also applicable to other enzymatic nucleotide reactions.  相似文献   

7.
Interactions among Cd2+, glutamic acid (Glu), and adenosine 5′-triphosphate (ATP) have been studied by potentiometric pH titration, IR, Raman, fluorescence, and NMR methods. In the Cd2+–ATP binary system, the main interaction sites are the α-, β-, and γ-phosphate groups, N-1, and/or N-7. Cd2+ binds to the N-1 site at relatively low pH and binds to the N-7 site of adenosine ring of ATP with increasing pH. In the Cd2+–Glu–ATP ternary system, ATP mainly binds to Cd2+ by the triphosphate chain. Oxygens of Glu coordinate with Cd2+ to form a complex to catalyze ATP hydrolysis. Hydrolysis of ATP catalyzed by the CdGlu complex was studied at pH 7.0 and 80°C by 31P-NMR spectrometry. Kinetics studies showed that the rate constant of ATP hydrolysis was 0.0199?min?1 in the ternary system, which is 9.9-fold faster than that in the ATP solution (2.01?×?10?3?min?1). Hydrolysis occurs through an addition–elimination reaction mechanism with Cd2+ regulating the recognition and catalytic hydrolysis of ATP; water participates in the hydrolysis reaction of ATP at different steps with different functions in the ternary system.  相似文献   

8.
Easy access to discrete nanoclusters in metal‐folded single‐chain nanoparticles (metal‐SCNPs) and independent ultrafine sudomains in the assemblies via coordination‐driven self‐assembly of hydrophilic copolymer containing 9% imidazole groups is reported herein. 1H NMR, dynamic light scattering, and NMR diffusion‐ordered spectroscopy results demonstrate self‐assembly into metal‐SCNPs (>70% imidazole‐units folded) by neutralization in the presence of Cu(II) in water to pH 4.6. Further neutralization induces self‐assembly of metal‐SCNPs (pH 4.6–5.0) and shrinkage (pH 5.0–5.6), with concurrent restraining residual imidazole motifs and hydrophilic segment, which organized into constant nanoparticles over pH 5.6–7.5. Atomic force microscopy results evidence discrete 1.2 nm nanoclusters and sub‐5‐nm subdomains in metal‐SCNP and assembled nanoparticle. Reduction of metal center using sodium ascorbate induces structural rearrangement to one order lower than the precursor. Enzyme mimic catalysis required media‐tunable discrete ultrafine interiors in metal‐SCNPs and assemblies have hence been achieved.  相似文献   

9.
The interaction in aqueous solution of adenosine 5′‐triphosphate (ATP) with a series of open‐chain polyamines linked at one or both ends to anthrylmethyl or naphthylmethyl fragments was followed by potentiometric titration, 1H‐, 13C‐, and 31P‐NMR spectroscopy, and by steady‐state fluorescence measurements. The results revealed greater stabilities for the compounds containing one anthracene moiety than for those with one naphthalene moiety, the stabilities of the compounds with both ends N‐substituted with naphthylmethyl groups being close to those containing just one anthrylmethyl unit. The 1H‐NMR spectra showed that in all systems, there is involvement of ππ stacking interactions in the stabilization of the adduct species. The competitive effect of the anions afforded by the supporting electrolyte was checked in some of the studied systems working at two different ionic strenghts (0.15M and 1.0M NaCl). The joint analysis of the spectrofluorimetric titrations and pH‐metric species‐distribution curves showed that for all the ATP? receptor systems, a quenching of the fluorescence occurred upon protonation of the adenine N(1)atom. Steady‐state fluorescence and time‐correlated single‐photon‐counting analysis of a system made up of ATP and a bis‐chromophoric polyamine receptor containing anthracene and naphthalene fluorophores established that the energy‐transfer process between the naphthalene and anthracene moieties is still operative despite the presence of ATP.  相似文献   

10.
The synthesis of [1-15N]nicotinamide adenine dinucleotide is described. Chemical shift data from 15N NMR studies are presented for the pyridine ring nitrogen of labeled NAD and related compounds. The results indicate a 15N label in the N-1 position to be highly sensitive to the redox-state of the pyridine moiety, with an upfield shift of over 100 ppm observed upon reduction of NAD+ to NADH. The feasibility of conducting 15N NMR studies of pyridine nucleotide binding to dehydrogenases is discussed.  相似文献   

11.
DnaB helicases are bacterial, ATP‐driven enzymes that unwind double‐stranded DNA during DNA replication. Herein, we study the sequential binding of the “non‐hydrolysable” ATP analogue AMP‐PNP and of single‐stranded (ss) DNA to the dodecameric DnaB helicase from Helicobacter pylori using solid‐state NMR. Phosphorus cross‐polarization experiments monitor the binding of AMP‐PNP and DNA to the helicase. 13C chemical‐shift perturbations (CSPs) are used to detect conformational changes in the protein upon binding. The helicase switches upon AMP‐PNP addition into a conformation apt for ssDNA binding, and AMP‐PNP is hydrolyzed and released upon binding of ssDNA. Our study sheds light on the conformational changes which are triggered by the interaction with AMP‐PNP and are needed for ssDNA binding of H. pylori DnaB in vitro. They also demonstrate the level of detail solid‐state NMR can provide for the characterization of protein–DNA interactions and the interplay with ATP or its analogues.  相似文献   

12.
Abstract

The ability of alkalotolerant bacterium Zacillus FTU to maintain intracellular pH was studied in the wide range of extracellular pH: 6.5–11, by means of 31P NMR. Bacillus FTU is an obligatory aerobic microorganism, possessing a high speed of oxygen consumption, that is why it was especially important to provide sufficient oxygen supply during the entire period of measurement. We have worked out a special glass filter insert for the NMR sample tube which allowed for uniform air supply in the cell suspension. The viability of the cells was checked by ATP level analysis Since in the case of Bacillus FTU ATP content if highly sensitive to the quantity of oxygen. The endogeneous P1 was used as a pH indicator. The level of Pi is extremely high in Bacillus FTU-around 70–30 mM, that's why it was possible to use relatively low concentration of cells in the suspension to obtain sufficient NMR sensitivity (approximately 5–7; of intracellular volume). Special procedure was employed to obtain a calibration curve: we used gramicidin in the concentration 10 pM to equilibrate in-tra- and extracellular pH; the former being measured by 31P NMR and the latter-by pH-meter. Bacillus FTU in energized state showed the ability to maintain constant intracellular pII (approximately 8.0–8.5) in the range of extracellular pH from 7.3 till 10.5, which agreed with the pH range of the cell growth. Thus, the obtained data support the idea of intracellular pH being of vital importance for cell metabolism.  相似文献   

13.
Interactions of protonated forms of kanamycin A with nucleotides and several simple phosphate anions have been studied by potentiometric and NMR titrations. The affinity of kanamycin A to anions is comparable to that observed with other aliphatic polyammonium receptors of similar charge, but it discriminates triphosphate nucleotides with different nucleobases with binding constants following the order GTP?CTP ≈ ATP. Kanamycin A also binds the respective uncharged nucleosides with the same selectivity. Binding of ATP is exothermic with a negative entropic contribution in contrast to what is expected for simple ion pairing. Other tested aminoglycosides, amikacin and streptomycin, bind ATP less efficiently than kanamycin A. Models of structures of kanamycin A complexes with ATP and GTP obtained by molecular mechanics (OPLS-2005) calculations based on 1H and 31P NMR data confirm the possibility of nucleotide discrimination by simultaneous ion pairing of terminal nucleotide phosphate groups with ammonium sites of rings B and C and hydrogen bonding of the nucleobase at the ring A of the aminoglycoside.  相似文献   

14.
This paper presents results from a series of pulsed field gradient (PFG) NMR studies on lipophilic guanosine nucleosides that undergo cation‐templated assembly in organic solvents. The use of PFG‐NMR to measure diffusion coefficients for the different aggregates allowed us to observe the influences of cation, solvent and anion on the self‐assembly process. Three case studies are presented. In the first study, diffusion NMR confirmed formation of a hexadecameric G‐quadruplex [G 1 ]16 ? 4 K+ ? 4 pic? in CD3CN. Furthermore, hexadecamer formation from 5′‐TBDMS‐2′,3′‐isopropylidene G 1 and K+ picrate was shown to be a cooperative process in CD3CN. In the second study, diffusion NMR studies on 5′‐(3,5‐bis(methoxy)benzoyl)‐2′,3′‐isopropylidene G 4 showed that hierarchical self‐association of G8‐octamers is controlled by the K+ cation. Evidence for formation of both discrete G8‐octamers and G16‐hexadecamers in CD2Cl2 was obtained. The position of this octamer–hexadecamer equilibrium was shown to depend on the K+ concentration. In the third case, diffusion NMR was used to determine the size of a guanosine self‐assembly where NMR signal integration was ambiguous. Thus, both diffusion NMR and ESI‐MS show that 5′‐O‐acetyl‐2′,3′‐O‐isopropylidene G 7 and Na+ picrate form a doubly charged octamer [G 7 ]8 ? 2 Na+ ? 2 pic? 9 in CD2Cl2. The anion's role in stabilizing this particular complex is discussed. In all three cases the information gained from the diffusion NMR technique enabled us to better understand the self‐assembly processes, especially regarding the roles of cation, anion and solvent.  相似文献   

15.
Hen‐egg‐white lysozyme (HEWL) is specifically cleaved at the Trp28–Val29 and Asn44–Arg45 peptide bonds in the presence of a Keggin‐type [Ce(α‐PW11O39)2]10? polyoxometalate (POM; 1 ) at pH 7.4 and 37 °C. The reactivity of 1 towards a range of dipeptides was also examined and the calculated reaction rates were comparable to those observed for the hydrolysis of HEWL. Experiments with α‐lactalbumin (α‐LA), a protein that is structurally highly homologous to HEWL but has a different surface potential, showed no evidence of hydrolysis, which indicates the importance of electrostatic interactions between 1 and the protein surface for the hydrolytic reaction to occur. A combination of spectroscopic techniques was used to reveal the molecular interactions between HEWL and 1 that lead to hydrolysis. NMR spectroscopy titration experiments showed that on protein addition the intensity of the 31P NMR signal of 1 gradually decreased due to the formation of a large protein/polyoxometalate complex and completely disappeared when the HEWL/ 1 ratio reached 1:2. Circular dichroism (CD) measurements of HEWL indicate that addition of 1 results in a clear decrease in the signal at λ=208 nm, which is attributed to changes in the α‐helical content of the protein. 15N–1H heteronuclear single quantum coherence (HSQC) NMR measurements of HEWL in the presence of 1 reveal that the interaction is mainly observed for residues that are located in close proximity to the first site in the α‐helical part of the structure (Trp28–Val29). The less pronounced NMR spectroscopic shifts around the second cleavage site (Asn44–Arg45), which is found in the β‐strand region of the protein, might be caused by weaker metal‐directed binding, compared with strong POM‐directed binding at the first site.  相似文献   

16.
Multinuclear magnetic resonance experiments were performed (1H, 13C, 31P, and 15N) for P‐H phosphoranes derived from 2‐aminophenol, 4‐tert‐butyl‐2‐aminophenol, and 4,6‐di‐tert‐butyl‐2‐aminophenol. Selective heteronuclear 1H{15N} double resonance experiments and two‐dimensional 15N/1H HETCOR experiments enabled us to determine various signs of coupling constants (e.g., 2J(31P, N, 1H) > 0; 1J(31P, 15N) < 0). The 1H‐coupled 15N NMR spectrum recorded by the INEPT pulse sequence shows the splitting due to 1J(31P, 15N) and 2J(15N, P, 1H). The latter value is useful for polarization transfer experiments from 1H to 15N, once the hydrogen atoms of the N‐H functions are replaced by other groups. Isotope‐induced chemical shifts 1Δ14/15N(31P) were measured by using the INEPT‐HEED pulse sequence. © 2000 John Wiley & Sons, Inc. Heteroatom Chem 11:11–15, 2000  相似文献   

17.
A series of aminodiphenylphosphanes 1 [Ph2P‐N(H)tBu ( a ), ‐NEt2 ( b ), ‐NiPr2 ( c )], 2 [Ph2P‐NHPh ( a ), ‐NH‐2‐pyridine ( b ), ‐NH‐3‐pyridine ( c ), ‐NH‐4‐pyridine ( d ), NH‐pyrimidine ( e ), NH‐2,6‐Me2‐C6H3 ( f ), NH‐3‐Me‐2‐pyridine ( g )], 3 [Ph2P‐N(Me)Ph ( a ), ‐NPh2 ( b )], and N‐pyrrolyldiphenylphosphane 4 (Ph2P‐NC4H4) was prepared and studied by NMR (1H, 13C, 31P, 15N NMR) spectroscopy. The isotope‐induced chemical shifts 1Δ14/15N(31P) were determined at natural abundance of 15N by using HEED INEPT experiments. A dependence of 1Δ14/15N(31P) on the substituents at nitrogen was found (alkyl < H < aryl; increasingly negative values). The magnitude and sign of the coupling constants 1J(31P,15N) (positive sign) are dominated by the presence of the lone pair of electrons at the phosphorus atom. The X‐ray structural analysis of 2b is reported, showing the presence of dimers owing to intermolecular hydrogen bridges in the solid state. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:542–550, 2001  相似文献   

18.
The [Fc? bis{ZnII(TACN)(Py)}] complex, comprising two ZnII(TACN) ligands (Fc=ferrocene; Py=pyrene; TACN=1,4,7‐triazacyclononane) bearing fluorescent pyrene chromophores linked by an electrochemically active ferrocene molecule has been synthesised in high yield through a multistep procedure. In the absence of the polyphosphate guest molecules, very weak excimer emission was observed, indicating that the two pyrene‐bearing ZnII(TACN) units are arranged in a trans‐like configuration with respect to the ferrocene bridging unit. Binding of a variety of polyphosphate anionic guests (PPi and nucleotides di‐ and triphosphate) promotes the interaction between pyrene units and results in an enhancement in excimer emission. Investigations of phosphate binding by 31P NMR spectroscopy, fluorescence and electrochemical techniques confirmed a 1:1 stoichiometry for the binding of PPi and nucleotide polyphosphate anions to the bis(ZnII(TACN)) moiety of [Fc? bis{ZnII(TACN)(Py)}] and indicated that binding induces a trans to cis configuration rearrangement of the bis(ZnII(TACN)) complexes that is responsible for the enhancement of the pyrene excimer emission. Pyrophosphate was concluded to have the strongest affinity to [Fc? bis{ZnII(TACN)(Py)}] among the anions tested based on a six‐fold fluorescence enhancement and 0.1 V negative shift in the potential of the ferrocene/ferrocenium couple. The binding constant for a variety of polyphosphate anions was determined from the change in the intensity of pyrene excimer emission with polyphosphate concentration, measured at 475 nm in CH3CN/Tris‐HCl (1:9) buffer solution (10.0 mM , pH 7.4). These measurements confirmed that pyrophosphate binds more strongly (Kb=(4.45±0.41)×106 M ?1) than the other nucleotide di‐ and triphosphates (Kb=1–50×105 M ?1) tested.  相似文献   

19.
A new tailor-made colorimetric chemosensor 1, containing pyridine and benzothiazole moieties connected through an azo (–N = N–) linkage has been synthesised. In 9:1 (v/v) aqueous THF (pH 7.0 HEPES buffer), it showed a conspicuous naked-eye colour change upon binding to Ni2+ (colourless to light green) and AcO (colourless to orange) resulting in their ratiometric sensing. The cation and anion recognition property of the chemosensor 1 was monitored by UV–vis spectral analysis and 1H NMR titrations.  相似文献   

20.
A series of new phosphoramides with general formula RP(O)X2, where R = amino/p‐methylphenoxy and X = amine, were synthesized and characterized by 1H, 13C, 31P nuclear magnetic resonance (NMR), and infrared (IR) spectroscopy and elemental analysis. The 31P{1H} NMR spectra show that among compounds 7–9 containing 2‐, 3‐, and 4‐aminopyridinyl moieties, respectively, the shielding order of the P atom decreases as 7 > 9 > 8 . Also, the structure of compound 7 was determined by X‐ray crystallography. In this structure, repeated noncentrosymmetric dimers are formed by two strong intermolecular N(1)‐H(1N)…N(2) and N(3)‐H(3N)…O(1) hydrogen bonds. Taking into account weak intermolecular C(17)‐H(17C)…N(4), C(17)‐H(17E)…N(4), C(2)‐H(2A)…O(2), and also weak aromatic C—H…C interactions, a three‐dimensional polymeric chain is created in the crystalline network. The density functional theory calculations at B3LYP, B3PW91, and M06 levels using the 6–31+G** basis set were in good agreement with the X‐ray crystallography data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号