首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An optimised method using stir bar sorptive extraction (SBSE) and a thermal desorption‐GC‐electron capture detector (GC‐ECD) for the determination of short‐chain chlorinated paraffins from water samples was developed. Recoveries near to 100% were obtained by using 20 mm×0.5 mm (length×film thickness) PDMS commercial stir bars from 200 mL spiked water samples and 20% methanol addition with an extraction period of 24 h. Method sensitivity, linearity and precision were evaluated for surface water and wastewater spiked samples. A LOD of 0.03 and 0.04 μg/L was calculated for surface and wastewater, respectively. The precision of the method given as an RSD was below 20% for both matrices. The developed method was applied for the analysis of two real samples from a contaminated river and a wastewater treatment plant. Results were in accordance with those obtained using a previously developed method based on solid phase microextraction (SPME).  相似文献   

2.
Hu Y  Li J  Li G 《Journal of separation science》2011,34(10):1190-1197
The preparation, characteristics and application of a sorptive stir bar coated with molecularly imprinted polymer (MIP) using triadimefon as the template molecule are described here. Raw glass capillary was coated with MIP through chemical bonding. The synthesis method was effective and reproducible with the batch-to-batch RSD within 7.8%. Scanning electron micrographs of the stir bar revealed a highly porous coating with average thickness of 15 μm. The synthesized stir bar was proved to be highly stable in most of the solvent for use. Extraction performance showed the fabricated stir bar has excellent molecular recognition abilities for triadimefon and the structure-related compounds, such as triadimenol, diniconazole, flutriafol, hexaconazole, tebuconazole, paclobutrazol and uniconazole, and thus can be applied for simultaneous determination of these triazole fungicides from complex samples by coupling with high-performance liquid chromatography. The variables that influence extraction were optimized with 10.0 μg/L standard solutions of triazole fungicides, and the analytical method was established for the determination of triazole fungicides in soil. The detection limits were in the range of 0.14-0.34 μg/L, and the recoveries were from 86.7 to 114.6% for spiked soil sample.  相似文献   

3.
A PDMS/poly(vinylalcohol) (PDMS/PVA) film prepared through a sol–gel process was coated on stir bars for sorptive extraction, followed by liquid desorption and large volume injection–GC–flame photometric detector (LVI–GC–FPD) for the determination of five organophosphorus pesticides (OPPs) (phorate, fenitrothion, malathion, parathion, and quinalphos) in honey. The preparation reproducibility of PDMS/PVA‐coated stir bar ranged from 4.3 to 13.4% (n = 4) in one batch, and from 6.0 to 12.6% (n = 4) in batch to batch. And one prepared stir bar can be used for more than 50 times without apparent coating loss. The significant parameters affecting stir bar sorptive extraction (SBSE) were investigated and optimized. The LODs for five OPPs ranged from 0.013 (parathion) to 0.081 μg/L (phorate) with the RSDs ranging from 5.3 to 14.2% (c = 1 μg/L, n = 6). The proposed method was successfully applied to the analysis of five OPPs in honey.  相似文献   

4.
This study describes an extraction method based on silylated extraction vessel-dispersive liquid–liquid microextraction (SEV-DLLME) for preconcentration of some triazole pesticides (penconazole, hexaconazole, tebuconazole, diniconazole, triticonazole, and difenconazole) from aqueous samples. For this purpose, the interior surface of funnel-shaped extraction vessel is activated by concentrated NaOH and HCl solutions, silylated by trimethylchlorosilane (TMCS) and used in extraction of the analytes from a relatively high volume of aqueous sample. The adsorbed analytes are desorbed by methanol, which acts as a dispersive solvent in the following DLLME method. In the first step, the effects of different factors i.e., concentrations of NaOH, HCl, and silylated agent and their contact times were studied using central composite design (CCD) and response surface method. Extraction time, extraction solvent (chloroform) volume, dispersive solvent (methanol) volume, centrifugation rate and time, and salting-out effect in DLLME procedure were optimized in the same way using CCD, in the second step. High enrichment factors (EFs) (more than 1,000 in most cases) and low detection limits (at sub μg L?1 level) are attainable by using gas chromatography-flame ionization detection. The repeatability and reproducibility of the proposed method are good and the relative standard deviations (RSD %) for six repeated experiments (C = 100 μg L?1 of each pesticide) are less than 7.25%. Finally, the method was successfully applied in determination of analytes in some aqueous samples such as wastewater, well water, and some fruit juice samples.  相似文献   

5.
In the present study, a rapid, simple, and highly efficient sample preparation method based on air‐assisted liquid–liquid microextraction followed by gas chromatography with flame ionization detection was developed for the extraction, preconcentration, and determination of five triazole pesticides (penconazole, hexaconazole, diniconazole, tebuconazole, and triticonazole) in edible oils. Initially, the oil samples were diluted with hexane and a few microliter of a less soluble organic solvent (extraction solvent) in hexane was added. To form fine and dispersed extraction solvent droplets, the mixture of oil sample solution and extraction solvent is repeatedly aspirated and dispersed with a syringe. Under the optimum extraction conditions, the method showed low limits of detection and quantification between 2.2–6.1 and 7.3–20 μg/L, respectively. Enrichment factors and extraction recoveries were in the ranges of 71–96 and 71–96%, respectively. The relative standard deviations for the extraction of 100 and 250 μg/L of each pesticide were less than 5% for intraday (n = 6) and interday (n = 3) precisions. Finally edible oil samples were successfully analyzed using the proposed method, and hexaconazole was found in grape seed oil.  相似文献   

6.
A novel and reliable method for determination of five triazole fungicide residues (triadimenol, tebuconazole, diniconazole, flutriafol, and hexaconazol) in traditional Chinese medicine samples was developed using dispersive solid‐phase extraction combined with ultrasound‐assisted dispersive liquid–liquid microextraction before ultra‐high performance liquid chromatography with tandem mass spectrometry. The clean up of the extract was conducted using dispersive solid‐phase extraction by directly adding sorbents into the extraction solution, followed by shaking and centrifugation. After that, a mixture of 400 μL trichloromethane (extraction solvent) and 0.5 mL of the above supernatant was injected rapidly into water for the dispersive liquid–liquid microextraction procedure. The factors affecting the extraction efficiency were optimized. Under the optimum conditions, the calibration curves showed good linearity in the range of 2.0–400 (tebuconazole, diniconazole, and hexaconazole) and 4.0–800 ng/g (triadimenol and flutriafol) with the regression coefficients higher than 0.9958. The limit of detection and limit of quantification for the present method were 0.5–1.1 and 1.8–4.0 ng/g, respectively. The recoveries of the target analytes ranged from 80.2 to 103.2%. The proposed method has been successfully applied to the analysis of five triazole fungicides in traditional Chinese medicine samples, and satisfactory results were obtained.  相似文献   

7.
In the present work a new, simple, rapid and environmentally friendly dispersive liquid–liquid microextraction (DLLME) method has been developed for extraction/preconcentration of some triazole pesticides in aqueous samples and in grape juice. The extract was analyzed with gas chromatography–flame ionization detection (GC–FID) or gas chromatography–mass spectrometry (GC–MS). The DLLME method was performed in a narrow-bore tube containing aqueous sample. Acetonitrile and a mixture of n-hexanol and n-hexane (75:25, v/v) were used as disperser and extraction solvents, respectively. The effect of several factors that influence performance of the method, including the chemical nature and volume of the disperser and extraction solvents, number of extraction, pH and salt addition, were investigated and optimized. Figures of merit such as linearity (r2 > 0.995), enrichment factors (EFs) (263–380), limits of detection (0.3–5 μg L?1) and quantification (0.9–16.7 μg L?1), and relative standard deviations (3.2–5%) of the proposed method were satisfactory for determination of the model analytes. The method was successfully applied for determination of target pesticides in grape juice and good recoveries (74–99%) were achieved for spiked samples. As compared with the conventional DLLME, the proposed DLLME method showed higher EFs and less environmental hazards with no need for centrifuging.  相似文献   

8.
A method based on sequential stir bar sorptive extraction followed by automated thermal desorption–GC–MS for the determination of pesticides in underground and superficial water samples has been developed. Retention time locked GC–MS and deconvolution Automated Mass Spectral Deconvolution and Identification System software allows the use of pesticide databases for identification and quantification in routine applications. Quantitation limits and repetitivity using full scan mass spectrometric determination guarantee the applicability of the method, which enables considerable savings to be made in total analysis time, with data processing times of around 2 min/sample.  相似文献   

9.
In this article, a novel polydimethylsiloxane/activated carbon (PDMS‐ACB) material is proposed as a new polymeric phase for stir bar sorptive extraction (SBSE). The PDMS‐ACB stir bar, assembled using a simple Teflon®/glass capillary mold, demonstrated remarkable stability and resistance to organic solvents for more than 150 extractions. The SBSE bar has a diameter of 2.36 mm and a length of 2.2 cm and is prepared to contain 92 μL of polymer coating. This new PDMS‐ACB bar was evaluated for its ability to determine the quantity of pesticides in sugarcane juice samples by performing liquid desorption (LD) in 200 μL of ethyl acetate and analyzing the solvent through gas chromatography coupled with mass spectrometry (GC‐MS). A fractional factorial design was used to evaluate the main parameters involved in the extraction procedure. Then, a central composite design with a star configuration was used to optimize the significant extraction parameters. The method used demonstrated a limit of quantification (LOQ) of 0.5–40 μg/L, depending on the analyte detected; the amount of recovery varied from 0.18 to 49.50%, and the intraday precision ranged from 0.072 to 8.40%. The method was used in the analysis of real sugarcane juice samples commercially available in local markets.  相似文献   

10.
Bianjing Si  Jie Zhou 《中国化学》2011,29(11):2487-2494
Based on a molecularly imprinted organic‐silica hybrid‐based stir bar, a pre‐treatment methodology was developed for enrichment of nicosulfuron in aqueous samples. The molecularly imprinted organic‐silica hybrid‐based coating on the outer surface of a glass stir bar was prepared by in‐situ polymerization using nicosulfuron as a template molecule, α‐methacrylic acid as a functional monomer, methacryloxypropytrimethoxysilane as a cross‐linker in the mixture of acetonitrile and trichloromethane (V/V, 7.5:1). To achieve the selective extraction of the target analyte from aqueous samples, several main parameters, including extraction time, pH value and contents of inorganic salt in the sample matrix were investigated. Evidence was also presented by the scanning electronic microscopic images of the imprinted and non‐imprinted stir bars. Then, the extraction efficiency of the stir bar was tested with separate experiments and competitive sorption experiments. These results showed that using six sulfonylureas as substrates the molecularly imprinted organic‐silica hybrid‐based stir bar gave high selectivity for the template, nicosulfuron compared to the non‐imprinted organic‐silica hybrid‐based stir bar. This sorption extraction was coupled to liquid chromatography ultraviolet detection allowing the determination of nicosulfuron from tap water. The method showed good recoveries and precision, 96.0% (RSD 2.7%, n=3) for tap water spiked with 0.125 nmol (25.00 mL sample), suggesting that the stir bar can be successfully applied to the pre‐concentration of nicosulfuron in real aqueous samples.  相似文献   

11.
In this paper, a novel monolithic stir bar based on molecularly imprinted polymer (MIP) was firstly developed by filling modified neodymium magnet (Nd2Fe14B) powders into a glass tube (60 × 4 mm), followed by the imprinted grafting with bisphenol A (BPA) as the template molecule by thermal polymerization. It has been successfully used for the stir bar sorptive extraction (SBSE) and its extraction performance illustrated that the MIP‐encapsulated stir bar had stronger affinity to the template molecule, compared with the stir bar based on the non‐imprinted molecularly polymer (NIP). Under the optimal extraction conditions, a simple method based on the coupling of MIP‐SBSE with high performance liquid chromatography (HPLC) was used for the selective determination of the model mixtures of BPA, 4‐phenylphenol (PP) and phenol (P) in bottled water. The recoveries of BPA, PP and P were in the range of 88.5‐96.1%, 78.2‐89.7%, 81.3‐89.5% at three spiked levels, respectively, demonstrating that higher extraction and the specific absorption occurred between the template molecule and the prepared MIP stir bar.  相似文献   

12.
A method for the determination of ultra-trace amounts of organochlorine pesticides (OCPs) in river water was developed by using stir bar sorptive extraction (SBSE) followed by thermal desorption and comprehensive two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry (SBSE-TD-GC×GC-HRTOF-MS). SBSE conditions such as extraction time profiles, phase ratio (β: sample volume/polydimethylsiloxane (PDMS) volume), and modifier addition, were examined. Fifty milli-liter sample including 10% acetone was extracted for 3 h using stir bars with a length of 20 mm and coated with a 0.5 mm layer of PDMS (PDMS volume, 47 μL). The stir bar was thermally desorbed and subsequently analyzed by GC×GC-HRTOF-MS. The method showed good linearity over the concentration range from 50 to 1000 pg L(-1) or 2000 pg L(-1) for all analytes, and the correlation coefficients (r(2)) were greater than 0.9903 (except for β-HCH, r(2)=0.9870). The limit of detection (LOD) ranged from 10 to 44 pg L(-1). The method was successfully applied to the determination of 16 OCPs at pg L(-1) to ng L(-1) in river water. The results agree fairly well with the values obtained by a conventional liquid-liquid extraction (LLE)-GC-HRMS (selected ion monitoring: SIM) method using large sample volume (20 L). The method also allows screening of non-target compounds, e.g. pesticides and their degradation products, polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pharmaceuticals and personal care products (PPCPs) and metabolites in the same river water sample, by using full spectrum acquisition with accurate mass in GC×GC.  相似文献   

13.
For the first time, the low‐density solvent‐based vortex‐assisted surfactant‐enhanced emulsification liquid–liquid microextraction, followed by GC‐flame photometric detection has been developed for the determination of eight organophosphorus pesticides in aqueous samples. A small volume of organic extraction solvent (toluene) was dispersed into the aqueous samples by the assistance of surfactant and vortex agitator. The extraction was performed in a special disposable polyethylene pipette, allowing using the reagents with lower density than water as extraction solvents. The influence parameters were systemically investigated and optimized: toluene (30 μL) and Triton X‐100 (0.2 mmol/L) were used as the extraction solvent and the surfactant, respectively, and the extraction was performed for 1 min under room temperature without adding sodium chloride. Under the optimum conditions, the validation parameters such as the RSD (n = 6; 2.1–11.3%), LOD (0.005 and 0.05 μg/L), and linear range (0.1–50.0 μg/L with correlation coefficients (0.9958–0.9992) showed the method was satisfying. The proposed method has been successfully applied to the determination of the organophosphorus pesticides in real samples with recoveries between 82.8 and 100.2%.  相似文献   

14.
Trace and ultra-trace analysis can be difficult to achieve, especially for polar, more volatile, and/or thermally unstable analytes. A novel technique, coined ICE Concentration Linked with Extractive Stirrer (ICECLES), may help address this problem. The implementation of ICECLES described here combines stir bar sorptive extraction (SBSE) with freeze concentration (FC), where an aqueous solution is frozen during SBSE in order to concentrate analytes into a polydimethylsiloxane (PDMS) coated stir bar. Five test probe molecules with a range of log Kows (2-butanol, benzyl alcohol, benzaldehyde, dimethyl trisulfide and bromobenzene) were prepared from aqueous solutions using ICECLES. Thermal desorption gas–chromatography mass–spectrometry was then used to quantify these analytes. Parameters affecting the performance of ICECLES (e.g., freeze rate) were evaluated, with extraction at lower speeds resulting in higher extraction efficiencies, whereas the freeze rate and initial analyte concentration only had a minor effect. ICECLES produced much higher extraction efficiencies than SBSE alone, with signal enhancements of up to 474× SBSE. ICECLES also provided excellent reproducibility and lower LODs than SBSE for all compounds tested. ICECLES performed well when used to analyze multiple triazine pesticides and breakdown products in environmental surface waters. Overall, the ICECLES technique was excellent at preparing aqueous samples for trace analysis and shows promise as a novel analytical sample preparation technology.  相似文献   

15.
Depression is the largest cause of disability worldwide, affecting 350 million people. Notwithstanding that clinical trials demonstrate antidepressants efficacy, the efficient response can vary individually concerning therapeutic dosage. Although important, plasma levels monitoring remains an analytical challenge whereas clean‐up and pre‐concentration represent critical steps. Therefore, this study aims to develop, optimize and validate a method for fluoxetine determination in human plasma, employing a laboratory‐made device consisting of a PDMS stir bar sorptive for extraction, coupled with high‐performance liquid chromatography–fluorescence detection (SBSE–HPLC–FD). Optimization involved sorption–desorption steps. For sorption, temperature and time were assessed by factorial and central composite design approaches, taking into account the desirability and the response surface results, with stirring speed also examined. For desorption kinetics and ultrasonic and magnetic stirring mode were evaluated. The proposed method after validation was robust, linear (25.00–1000.00 ng mL?1, R2 > 0.98) and presented good intra‐ (RSD 4.18%) and inter‐day‐assay (RSD 11.60%) precision and accuracy (recovery 109.60%), allowing reliable quantitation without interference. The method was successfully applied to real samples. SBSE–HPLC–FD could represent a feasible alternative with good cost–benefit for low‐volume samples and therapeutic drug monitoring, as well as contributing to correlation studies between plasma fluoxetine levels and clinical response, which is still little studied.  相似文献   

16.
A simple and miniaturized pretreatment procedure combining matrix solid‐phase dispersion (MSPD) with ultrasound‐assisted dispersive liquid–liquid microextraction (UA‐DLLME) technique was proposed in first time for simultaneous determination of three pyrethroids (fenpropathrin, cyhalothrin and fenvalerate) in soils. The solid samples were directly extracted using MSPD procedure, and the eluent of MSPD was used as the dispersive solvent of the followed DLLME procedure for further purification and enrichment of the analytes before GC‐ECD analysis. Good linear relationships were obtained for all the analytes in a range of 5.0–500.0 ng/g with LOQs (S/N=10) ranged from 1.51 to 3.77 ng/g. Average recoveries at three spiked levels were in a range of 83.6–98.5% with RSD≤7.3%. The present method combined the advantages of MSPD and DLLME, and was successfully applied for the determination of three pyrethroids in soil samples.  相似文献   

17.
In this paper, solid‐phase extraction (SPE) in combination with dispersive liquid–liquid microextraction (DLLME) has been developed as a sample pretreatment method with high enrichment factors for the sensitive determination of amide herbicides in water samples. In SPE–DLLME, amide herbicides were adsorbed quantitatively from a large volume of aqueous samples (100 mL) onto a multiwalled carbon nanotube adsorbent (100 mg). After elution of the target compounds from the adsorbent with acetone, the DLLME technique was performed on the resulting solution. Finally, the analytes in the extraction solvent were determined by gas chromatography–mass spectrometry. Some important extraction parameters, such as flow rate of sample, breakthrough volume, sample pH, type and volume of the elution solvent, as well as salt addition, were studied and optimized in detail. Under optimum conditions, high enrichment factors ranging from 6593 to 7873 were achieved in less than 10 min. There was linearity over the range of 0.01–10 μg/L with relative standard deviations of 2.6–8.7%. The limits of detection ranged from 0.002 to 0.006 μg/L. The proposed method was used for the analysis of water samples, and satisfactory results were achieved.  相似文献   

18.
Stir‐bar sorptive extraction and liquid desorption followed by large volume injection‐gas chromatography coupled to mass spectrometry under selected ion monitoring mode acquisition (SBSE‐LD/LVI‐GC‐MS(SIM)) was applied for the determination of six benzotriazole UV stabilizers (Tinuvin P, Allyl‐bzt, Tinuvin 320, Tinuvin 326, Tinuvin 327 and Tinuvin 328) in wastewater matrices. Parameters affecting the performance of extraction and desorption steps were thoroughly evaluated using uni‐ and multivariate optimization strategies, based on the use of experimental factorial designs. Assays performed with stir bars, coated with 24 μL of polydimethylsiloxane, on 25 mL of ultra‐pure water samples spiked at the 0.5 ng/mL level, yielded recoveries ranging from 47.9±1.4% (Tinuvin P) to 103.1±3.6% (Tinuvin 326), under optimized experimental conditions. When applied to complex matrices (e.g. wastewater), the methodology showed also excellent linear dynamic ranges (0.02–10.00 ng/mL) for the six benzotriazole UV stabilizers studied with correlation coefficients higher than 0.9970, limits of quantification in between 0.004 and 0.015 ng/mL, suitable repeatability (RSD<12.7%) and reproducibility (RSD<4.5%). The application of the proposed methodology to urban sewage waters from Spain and Portugal wastewater plants revealed the presence of low contents of some benzotriazole UV stabilizers.  相似文献   

19.
Stir bar sorptive extraction (SBSE) in combination with thermodesorption-gas chromatography-mass spectrometry (TD-GC-MS) was applied for the determination of eight insect repellents and synergists in water samples. The stir bar coated with polydimethylsiloxane (PDMS) was added to 20 mL of water sample with 4 g NaCl and stirred at 1000 rpm for 180 min. Then, the stir bar was subjected to TD-GC-MS. SBSE parameters (ionic strength, presence of organic solvent and time) were optimised. Blank contamination and carryover problems were also studied. The method affords detection limits between 0.5 and 30 ng/L, except for dimethyl phthalate (DMP) (150 ng/L) due to blank contamination problems. It shows good linearity with correlation coefficients over 0.997 and reproducibility (RSD) below 20%. The extraction efficiencies were between 29% for DMP and 80% for di-n-propyl isocinchomeronate (R-326). The feasibility of the method was tested by analysing real samples such as lake water, river water and wastewater.  相似文献   

20.
A spiral stir bar was proposed by using stainless steel spring as the extraction phase carrier to avoid the extraction phase friction and increase the amount of extraction phase for improving extraction efficiency. The extraction phase is filled in the cavity of the spring, resulting in a larger amount of the extraction phase than that conventionally coated on glass stir bar or stainless steel wire. Polyaniline‐polydimethylsiloxane sol‐gel packed spiral stir bar was prepared and evaluated for the extraction of five estrogens. The prepared spiral stir bar presented good extraction efficiency/preparation reproducibility and long lifetime (more than 150 reused times) for target estrogens. Based on it, a method of spiral stir bar sorptive extraction combined with high performance liquid chromatography coupled with ultra‐violet detection was developed for the analysis of trace estrogens in environmental and food samples. The detection limit for five estrogens was 0.11–.31 µg/L, with the enrichment factors of 83.0–118‐fold (maximal enrichment factor: 200‐fold). The reproducibility evaluated with each estrogen of 5 µg/L (n = 5) was 5.8–8.9%. The method was successfully applied for the determination of estrogens in environmental water and animal‐derived food samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号