首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 129 毫秒
1.
Solid-state Ln(L)3 compounds, where Ln stands for trivalent Tb, Dy, Ho, Er, Tm, Yb, Lu and Y, and L is 3-methoxybenzoate, have been synthesized. X-ray powder diffractometry, infrared spectroscopy, complexometry and elemental analysis were used to characterize the compounds. In order to study the thermal behaviour of these compounds simultaneous thermogravimetry and differential thermal analysis (TG-DTA) and differential scanning calorimetry (DSC) were used. The results provided information on the composition, dehydration, polymorphic transformation, thermal stability and thermal decomposition of the synthesized compounds.  相似文献   

2.
A new method for the synthesis and film deposition of nonvolatile aromatic lanthanide(III) carboxylates by ligand exchange reaction between the starting volatile components in the gas phase was proposed. The complexes Ln(Bz)3 (Ln = La3+, Tb3+, Lu3+, HBz = benzoic acid) were synthesized by gas-phase ligand exchange reaction between the volatile Ln(Thd)3 and HBz (HThd = 2,2,6,6-tetramethylheptane-3,5-dione). The composition of the complexes was confirmed by elemental, thermal, IR-spectroscopic, and photoluminescence analyses and, in the case of lanthanum and lutetium complexes, by 1H NMR.  相似文献   

3.
Solid state Ln2-L3 compounds, where Ln stands for heavy trivalent lanthanides (terbium to lutetium) and yttrium, and L is tartrate [(C4H4O6)?2] have been synthesized. Simultaneous thermogravimetry and differential thermal analysis, differential scanning calorimetry, X-ray powder diffractometry, infrared spectroscopy, elemental analysis and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results provided information concerning the stoichiometry, crystallinity, ligand??s denticity, thermal stability and thermal behaviour of these compounds.  相似文献   

4.
Solid-state Ln–C8H7O3 compounds, where Ln stands for Eu(III) and Gd(III) and C8H7O3 is 3-methoxybenzoate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy, elemental analysis and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, thermal stability and decomposition of the isolated compounds.  相似文献   

5.
Solid-state Ln(2-MeO-BP) compounds, where Ln stands for trivalent Eu to Lu and Y(III) and 2-MeO-BP (which is 2-methoxybenzylidenepyruvate) have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffraction, infrared spectroscopy and other methods of analysis were used to characterize and to study these compounds. On the base of the obtained results an Ln(2MeO-BP)3·nH2O general formula can be established.  相似文献   

6.
Solid state Ln2–L3 compounds, where Ln stands for light trivalent lanthanides (lanthanum to gadolinium), except promethium, and L is folate (C19H17N7O6), have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy (FTIR), TG coupled to FTIR, elemental analysis and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results provided information concerning the stoichiometry, crystallinity, ligand’s denticity, thermal stability, thermal behaviour and identification of the gaseous products evolved during the thermal decomposition of these compounds.  相似文献   

7.
Solid-state heavier lanthanides fumarates compounds have been synthesized, and the compounds were characterized by employing simultaneous thermogravimetry and differential thermal analysis (TG–DTA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), TG coupled to FTIR, elemental analysis, and complexometry. On heating, the dehydration occurs in a single and two consecutive steps and the thermal decomposition of the anhydrous compounds occurs in consecutive and/or overlapping steps, with formation of the respective oxides: Tb4O7 and Ln2O3 (Ln=Dy to Lu). The results also led to information about composition, thermal behavior, and the type of coordination of the isolated compounds.  相似文献   

8.
Solid-state Ln(L)3 compounds, where Ln stands for trivalent La, Ce, Pr, Nd, Sm, Eu, and L is ketoprofen have been synthesized. Thermogravimetry (TG), differential thermal analysis (DTA), differential scanning calorimetry (DSC) as well as X-ray diffraction powder (DRX) patterns, Fourier transformed infrared spectroscopy (FTIR), and other methods of analysis were used to study solid Ketoprofen of lighter trivalent lanthanides. The results provided information of the composition, dehydration, coordination mode, structure, thermal behavior, and thermal decomposition. The theoretical and experimental spectroscopic study suggests that the carboxylate group of ketoprofen is coordinate to metals as bidentate bond.  相似文献   

9.
Solid-state Ln(L)3 compounds, where Ln stands for trivalent Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y and L is 2-methoxybenzoate have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results provided information on the composition, dehydration, coordination mode, structure, thermal behaviour and thermal decomposition.  相似文献   

10.
A range of water soluble lanthanoid benzoate complexes of composition [Ln(Bz)3(H2O)n] (Ln = La, Gd, Ho and Yb; Bz = 3,5-bis((R)-2,3-dihydroxypropoxy)benzoate and 3,4,5-tris((R)-2,3-dihydroxypropoxy)benzoate) have been prepared by reaction of lanthanoid bicarbonates with three equivalents of the corresponding optically active benzoic acid in water. Application of [Ln(Bz)3(H2O)n] as asymmetric catalysts for epoxide ring opening reactions has been investigated using styrene oxide, showing complete conversion after 20 h, albeit with no significant enantiomeric excess observed. The formation of the lanthanoid complexes and subsequent catalytic conversion of styrene oxide to phenylethane-1,2-diol were monitored using real-time infrared (RTIR) spectroscopy, yielding information about reaction pathways and intermediates.  相似文献   

11.
Solid-state LnL3·1.25H2O compounds, where L is oxamate and Ln is light trivalent lanthanides, have been synthesized. Simultaneous thermogravimetry and differential scanning calorimetry (TG–DSC), experimental and theoretical infrared spectroscopy, TG–DSC coupled to FTIR, elemental analysis, complexometry, and X-ray powder diffractometry were used to characterize and to study the thermal behavior of these compounds. The results led to information about the composition, dehydration, thermal stability, thermal decomposition, and gaseous products evolved during the thermal decomposition of these compounds in dynamic air atmosphere. The dehydration occurs in a single step and through a slow process. The thermal decomposition of the anhydrous compounds occur in a single (Ce), two (Pr), and three (La, Nd to Gd) steps with the formation of the respective oxides, CeO2, Pr6O11, and Ln2O3 (Ln = La, Nd to Gd). The theoretical and experimental spectroscopic study suggests that the carboxylate group and amide carbonyl group of oxamate are coordinate to the metals in a bidentate chelating mode.  相似文献   

12.
The compounds [Ln(NC12H8)2], Ln = Eu and Yb, were obtained in solvent free reactions of the rare earth elements europium and ytterbium with the amine carbazole. Single crystals of both compounds were grown from the melt syntheses, no recrystallization from solvents was necessary. The new compounds are the first examples of homoleptic carbazolates of the rare earth elements furthermore exhibiting divalent lanthanides. In absence of any solvent, carbazole as the sole coordination partner shows η6‐π‐coordination in addition to the μ1‐ and μ2‐coordination of the nitrogen atoms. This results in a one‐dimensional chain structure of dimers with a formal C.N. of 6 for the rare earth elements and thus being low for divalent lanthanides. The products were investigated by X‐ray single crystal and powder diffraction, Mid IR, Far IR and Raman spectroscopy, and with DTA/TG regarding their thermal behaviour. Both compounds [Ln(NC12H8)2], Ln = Eu (1) and Yb (2) , crystallize isotypic in the triclinic space group P1.  相似文献   

13.
合成了仲丁基膦酸-2-丁基辛酯(HBO/BP)与希土(Ⅲ)(Ln=La, Gd, Ho, Y, Er, Yb)新的固体配合物,其组成为Ln(BO/BP)3,对配合物的性质进行了表征。热分析表明,在空气中,热分解分两步完成,热分解产物是Ln2P4O13。测定了配合物的红外光谱,对其主要吸收谱带进行了归属,配合物中Ln-O键具有较高的离子特性。  相似文献   

14.
Ln(TFA)3⋅3AZA (Ln=La, Sm, Er; TFA=trifluoroacetate and AZA=2-azacyclononanone)compounds were synthesized and characterized by microanalytical procedures, IR spectroscopy, X-ray powder diffraction, and thermal analysis. A kinetic study using La, Sm and Er thermogravimetric curves was carried out aiming to proposing a mechanism for the thermal decomposition of such complexes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
A new class of rare‐earth‐metal alkynyl complexes has been prepared. The reactions of the tris(tetramethylaluminate)s of lanthanum, praseodymium, samarium, yttrium, holmium, and thulium, [Ln(AlMe4)3], with phenylacetylene afforded compounds [Ln{(μ‐C?CPh)2AlMe2}3] (Ln=La ( 1 ), Pr ( 2 ), Sm ( 3 ), Y ( 4 ), Ho ( 5 ), Tm ( 6 )). All of these compounds have been characterized by NMR spectroscopy, X‐ray crystallography, and by elemental analysis. NMR spectroscopic studies of the series of para‐ magnetic compounds [Ln(AlMe4)3] and [Ln{(μ‐C?CPh)2AlMe2}3] have also been performed.  相似文献   

16.
Oil-bath reaction of respective metal nitrate with an aqueous mixture of oxydiacetic acid (H2oda) and hydrazine hydrate led to the formation of crystalline compounds with formula (N2H5)3[Ln(oda)3]·2.5H2O (where Ln = La, Ce, Pr, Nd and Sm), which are stable for a week and undergo efflorescence. The resulting complexes were characterized by infrared spectral, thermal (air and nitrogen atmosphere), UV–visible and PXRD studies. From the thermal studies, both in air and nitrogen atmosphere, these compounds show endothermic dehydration below 100 °C to give anhydrous compounds. Next, the anhydrous compounds (in air) undergo endothermic decomposition between 190 and 225 °C to form Ln(Hoda)3 intermediate, which further show exothermic decomposition to yield respective metal oxide as the end residue. But, in nitrogen atmosphere, the same anhydrous compounds exhibit endo-followed by exothermic decompositions to give respective metal as end product. This is observed as a continuous single step of decomposition in TG. The structure of (N2H5)3[Nd(oda)3]·2.5H2O has been determined by single-crystal X-ray analysis. The neodymium atom is coordinated by nine oxygen atoms from three tridentate (O, O, O) oxydiacetate ions with tricapped trigonal prismatic geometry. In addition, both the parent acid and its compounds display strong fluorescent emission due to the ligand, which renders them as fluorescent materials at room temperature.  相似文献   

17.
利用水热法合成了两种新型的二维(2D)稀土配位聚合物[Ln(PDC)(OH)(H2O)2]n (Ln = Eu (1) and Tb (2), H2PDC = 3,4-吡啶二羧酸),通过元素分析、红外光谱、热分析和X射线单晶衍射等技术对其进行了表征。单晶结构分析表明这两种配合物都显示出包含有一维Ln-O-Ln链的二维层状结构,层间又进一步通过 π-π 堆积和氢键作用扩展成三维超分子网络结构。此外,这两种配合物的固体在室温下都有强的荧光发射。  相似文献   

18.
The First Pyridylbenzimidazolates of the Lanthanides: Syntheses, Crystal Structure and Thermal Decomposition of NH4[Ln(N3C12H8)4] with Ln = Nd, Yb Transparent yellow crystals of the compounds NH4 [LnIII (N3C12H8)4] with Ln = Nd, Yb were obtained by solvent‐free reactions of the lanthanides neodymium and ytterbium with 2‐(2‐Pyridyl)‐benzimidazole. The bulk syntheses lead to isotypic compounds despite the different ionic radii of NdIII and YbIII exhibiting nitrogen coordination of the lanthanides only. Both compounds were investigated IR‐ and Raman‐spectroscopically and in regard to their thermal behaviour. They are the first examples of completely solvent‐free (coordinating and non‐coordinating) compounds of the lanthanides with a complete N‐coordination that were obtained via a solid‐state reaction method.  相似文献   

19.
Addition of KOH to aqueous solutions containing in a 3 : 1 molar ratio chloromethanephos-phonic acid (H2L), rare-earth ions (Ln3 +) results in crystallization of LnHL2 (Ln = La-Er, Y) andKLn3H6L8 (Ln = Yb, Lu). According to powder diffraction patterns, all the compounds within the LnHL2 andKLn3H6L8 groups are isostructural. Thulium forms a mixture of these two compounds. The solubility, IR spectra, and thermal stability of the products were studied.  相似文献   

20.
Homoleptic, 3D coordination polymers of the formula 33[Ln(3-PyPz)3] and 3[Ln(4-PyPz)3], (3-PyPz)=3-(3-pyridyl)pyrazolate anion, (4-PyPz)=3-(4-pyridyl)pyrazolate anion, both C8H6N3, Ln=Sm, Eu, Gd, Tb, Dy, were obtained as highly luminescent frameworks by reaction of the lanthanide metals (Ln) with the aromatic heterocyclic amine ligands 3-PyPzH and 4-PyPzH. The compounds form two isotypic series of 3D coordination polymers and exhibit fair thermal stability up to 360 °C. The luminescence properties of all ten compounds were determined in the solid state, with an antenna effect through ligand–metal energy transfer leading to high efficiency of the luminescence displayed by good quantum yields of up to 74 %. The emission is mainly based on ion-specific lanthanide-dependent intra 4 f–4 f transitions for Tb3+: green, Dy3+: yellow, Sm3+: orange-red, Eu3+: red. For the Gd3+-containing compounds, the yellow emission of ligand triplet-based phosphorescence is observed at room temperature and 77 K. Co doping of the Gd-containing frameworks with Eu3+ and Tb3+ allow further shifting of the chromaticity towards white light emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号