首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
Flash pyrolysis experiments on asphaltite samples were performed in a free-fall reactor under vacuum to determine the effects of pyrolysis temperature, feed rate and particle size. Maximum liquid yield of 13 wt.% was obtained in free-fall reactor under vacuum when the pyrolysis temperature was 700 °C, feed rate was 0.4 g min−1 and particle sizes were between 0.075 and 0.250 mm. The liquid products obtained at various pyrolysis conditions were analyzed by gas chromatography/mass spectrometer (GC/MS) and liquid products were classified as following: C5–C10, C11–C15, C16–C20 and C20+. The amount of saturated hydrocarbons decreased while the amount of unsaturated hydrocarbons increased with increase of temperature. While percent of C5–C10 unsaturated hydrocarbons continuously increased with increase of temperature, the percent of C11–C15 unsaturated hydrocarbons increased up to 750 °C and then started to diminish. Functional group analysis of solid residue was carried out using Fourier transform infrared spectrometry (FT-IR). The proximate analysis of solid residue indicated that percent of fixed carbon and ash increased with temperature.  相似文献   

2.
This study was intended to evaluate the effects of catalysts on product selectivity of microwave-assisted pyrolysis of corn stover and aspen wood. Metal oxides, salts, and acids including K2Cr2O7, Al2O3, KAc, H3BO3, Na2HPO4, MgCl2, AlCl3, CoCl2, and ZnCl2 were pre-mixed with corn stover or aspen wood pellets prior to pyrolysis using microwave heating. The thermal process produced three product fractions, namely bio-oil, gas, and charcoal. The effects of the catalysts on the fractional yields were studied. KAc, Al2O3, MgCl2, H3BO3, and Na2HPO4 were found to increase the bio-oil yield by either suppressing charcoal yield or gas yield or both. These catalysts may function as a microwave absorbent to speed up heating or participate in so-called “in situ upgrading” of pyrolytic vapors during the microwave-assisted pyrolysis of biomass. GC–MS analysis of the bio-oils found that chloride salts promoted a few reactions while suppressing most of the other reactions observed for the control samples. At 8 g MgCl2/100 biomass level, the GC–MS total ion chromatograms of the bio-oils from the treated corn stover or aspen show only one major furfural peak accounting for about 80% of the area under the spectrum. We conclude that some catalysts improve bio-oil yields, and chloride salts in particular simplify the chemical compositions of the resultant bio-oils and therefore improve the product selectivity of the pyrolysis process.  相似文献   

3.
Torrefaction is the thermal treatment techniques performed at relatively low temperature (<300 °C) in an inert atmosphere, which aims to improve the fuel properties attractively. In this study, woody biomass (Leucaena leucocephala) was torrefied at various temperatures and holding times and the pyrolysis behaviors of the torrefied wood were examined in detail by using TG-MS technique. It was found that the carbon content and the calorific value of the torrefied leucaena increased significantly when temperature and holding time during the torrefaction increased. From the TG-MS analysis, the pyrolysis behaviors of the torrefied leucaena were significantly different from those of the raw leucaena. The char yield at 800 °C for the torrefied leucaena was increased when increasing the holding time during the torrefaction. On the other hand, the tar yield during the pyrolysis decreased significantly with the increase in the holding time during the torrefaction. Through the results from the TG-MS analysis, it was concluded that the structure of leucaena was changed by the torrefaction at temperature below 275 °C and the cross-linking reactions occurred during the pyrolysis resulting in increase in char yields and decrease in tar yields. It was also suggested that the longer the holding time during the torrefaction, the more the cross-linking reactions proceed during the pyrolysis. The results obtained from the study provide the basic information for the pyrolyser and/or gasifier design by using torrefied biomass as a fuel.  相似文献   

4.
Zeolites have been shown to effectively promote cracking reactions during pyrolysis resulting in highly deoxygenated and hydrocarbon-rich compounds and stable pyrolysis oil product. Py/GC-MS was employed to study the catalytic fast pyrolysis of lignocellulosic biomass samples comprising oak, corn cob, corn stover, and switchgrass, as well as the fractional components of biomass, i.e., cellulose, hemicellulose, and lignin. Quantitative values of condensable vapors and relative compositions of the pyrolytic products including non-condensable gases (NCG's) and solid residues are presented to show how reaction products are affected by catalyst choice. While all catalysts decreased the oxygen-containing products in the condensable vapors, H-ZSM-5 was most effective at producing aromatic hydrocarbons from the pyrolytic vapors. We demonstrated how the Si/Al ratio of the catalysts plays a role in the deoxygenation of the vapors towards the pathway to aromatic hydrocarbons.  相似文献   

5.
There has been much interest in the utilization of biomass-derived fuels as substitutes for fossil fuels in meeting renewable energy requirements to reduce CO2 emissions. In this study, the pyrolysis characteristics of biomass have been investigated using both a thermogravimetric analyzer coupled with a Fourier-transform infrared spectrometer (TG-FTIR) and an experimental pyrolyzer. Experiments have been conducted with the three major components of biomass, i.e. hemicellulose, cellulose, and lignin, and with four mixed biomass samples comprising different proportions of these. Product distributions in terms of char, bio-oil, and permanent gas are given, and the compositions of the bio-oil and gaseous products have been analysed by gas chromatography-mass spectrometry (GC-MS) and gas chromatography (GC). The TG results show that the thermal decomposition of levoglucosan is extended over a wider temperature range according to the interaction of hemicellulose or lignin upon the pyrolysis of cellulose; the formation of 2-furfural and acetic acid is enhanced by the presence of cellulose and lignin in the range 350-500 °C; and the amount of phenol, 2,6-dimethoxy is enhanced by the integrated influence of cellulose and hemicellulose. The components do not act independently during pyrolysis; the experimental results have shown that the interaction of cellulose and hemicellulose strongly promotes the formation of 2, 5-diethoxytetrahydrofuran and inhibits the formation of altrose and levoglucosan, while the presence of cellulose enhances the formation of hemicellulose-derived acetic acid and 2-furfural. Pyrolysis characteristics of biomass cannot be predicted through its composition in the main components.  相似文献   

6.
Low grade biomass fibre produced as a by-product from the flax and hemp industry was manufactured into a non-woven, pre-formed matting material via entanglement, layering and needling. The advantage of such a structure is that textile technology is used to form a self supporting fibre matrix, utilising the ease with which fibre can be worked. The non-woven matting was then pyrolysed and gasified with steam to produce activated carbon. The influence of pyrolysis process conditions on the production of chars and activated carbon from the pre-formed, non-woven textile matting were investigated.  相似文献   

7.
In the present work, pyrolysis and combustion of the sewage sludge (fresh and composted) have been simulated using five fractions: low stability organic compounds, hemicellulose, cellulose, lignin-plastic, and inorganic compounds. Thermal behavior and kinetic parameters (pre-exponential factor and apparent activation energy) of the main components of the sludge are similar to those reported for hemicellulose, cellulose, and lignin present in lignocellulosic biomass. Comparing non-isothermal thermogravimetric analysis data obtained from fresh and composted sewage sludge, it is possible to measure the efficiency of the composting process. Most of the biodegradable matter is volatized in a temperature range from 150 °C to 400 °C. Non-biodegradable organic matter volatilizes between 400 °C and 550 °C. In both, fresh and composted sludges, oxygen presence increases the mass loss rate at any temperature, but differences between pyrolysis and combustion are focused in two clearly defined ranges. At low temperature (200–350 °C), mass loss is related with a volatilization process. At higher temperature (350–550 °C), mass loss is due to slow char oxidation (oxidative pyrolysis).  相似文献   

8.
Simultaneous preconcentration of phenol, 2-chlorophenol, 3-chlorophenol, 4-chlorophenol, 2-nitrophenol, 4-nitrophenol, and 2,4-dinitrophenol was improved by using olive wood (OW) washed with ethanol then pyrolyzed at 200 °C as preconcentrating sorbent. Various OW sorbents were prepared by either washing OW (with ethanol, ether, dichloromethane, tetrahydrofuran or n-hexane); or by pyrolysis (at 100, 150, 200, 250 or 300 °C); or by combined pyrolysis/washing. The adsorbents were characterized by elemental analysis, total acidity/basicity, methylene blue relative surface area, point of zero charge, distribution coefficients of the phenols, and sample loading flow rate. It seems that washing and pyrolysis have removed compounds covering the OW pores, which improved the OW porosity and exposed more acidic groups on the OW surface. The pores and the surface acidic groups seem to play major role in phenols sorption. Ethanol-washed OW then pyrolyzed at 200 °C gave the best preconcentration performance towards phenols (300 mg sorbent, 150 mL of the sample (pH 7), and elution with 3 mL of acetonitrile). The method was linear up to 100 μg L−1; limit of quantification: 0.20-0.48 μg L−1. The method could detect phenol and 2,4-dinitrophenol in industrial wastewater with spiked recovery range from 80.2% to 91.4% (±1.1 to 5.5%RSD) for all the phenols.  相似文献   

9.
There is a growing interest in the production of chemicals and novel carbonaceous materials from marine biomass such as macroalgae (seaweed). The pyrolysis of macroalgae can produce a range of chemicals and chars with various properties. A large proportion of macroalgae is carbohydrate of which the alginates are dominant. The alginates are largely present bound with a cation, which can include calcium, sodium, magnesium or potassium. The thermal behavior of alginic acid, sodium alginate and calcium alginate have been investigated using batch pyrolysis experiments and thermal analysis including TGA-FTIR and Py-GC-MS to evaluate the influence of the cation. The change in cation from Na+ to Ca2+ significantly influences the pyrolysis behavior and in the case of Na alginate leads to significant swelling of the char, not observed for the Ca alginate or alginic acid. The Na alginate decomposes at a lower temperature than the Ca alginate and produces a different range of volatile components. The char from the Na alginate has been characterised by gas sorption for BET surface area analysis and there is evidence for mesoporosity. SEM analysis indicates significant differences in surface morphology for the Na alginate compared to Ca alginate. The cation appears to exert a significant influence on the pyrolysis and oxidative behavior of alginates. Py-GC-MS indicates that the cation also influences the devolatilisation products produced by pyrolysis. The volatile components from the Ca alginate resemble more closely the components from alginic acid whereas the volatile components from Na alginate include a range of cyclopentenone derivatives. It is proposed that the Na+ catalyses decomposition whereas the Ca2+ does not.  相似文献   

10.
Summary This paper describes the application of capillary electrochromatography (CEC) to the rapid quantitative analysis of individual mono- and dihydroxy phenols in tobacco smoke. The method derived provides reproducible and quantitative analysis of real samples, in significantly shorter times than are achieved by current GC and HPLC methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号