首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The neutral compounds [Pt(bzq)(CN)(CNR)] (R=tBu ( 1 ), Xyl ( 2 ), 2‐Np ( 3 ); bzq= benzoquinolate, Xyl=2,6‐dimethylphenyl, 2‐Np=2‐napthyl) were isolated as the pure isomers with a trans‐Cbzq,CNR configuration, as confirmed by 13C{1H} NMR spectroscopy in the isotopically marked [Pt(bzq)(13CN)(CNR)] (R=tBu ( 1′ ), Xyl ( 2′ ), 2‐Np ( 3′ )) derivatives (δ13CCN≈110 ppm; 1J(Pt,13C)≈1425 Hz]. By contrast, complex [Pt(bzq)(C≡CPh)(CNXyl)] ( 4 ) with a trans‐Nbzq,CNR configuration, has been selectively isolated from [Pt(bzq)Cl(CNXyl)] (trans‐Nbzq,CNR) using Sonogashira conditions. X‐ray diffraction studies reveal that while 1 adopts a columnar‐stacked chain structure with Pt–Pt distances of 3.371(1) Å and significant π???π interactions (3.262 Å), complex 2 forms dimers supported only by short Pt???Pt (3.370(1) Å) interactions. In complex 4 the packing is directed by weak bzq???Xyl and bzq???C≡E (C, N) interactions. In solid state at room temperature, compounds 1 and 2 both show a bright red emission (?=42.1 % 1 , 57.6 % 2 ). Luminescence properties in the solid state at 77 K and concentration‐dependent emission studies in CH2Cl2 at 298 K and at 77 K are also reported for 1 , 1·CHCl3 , 2 , 2' , 2·CHCl3 , 3 , 4 .  相似文献   

5.
The influences of the Li???π interaction of C6H6???LiOH on the H???π interaction of C6H6???HOX (X=F, Cl, Br, I) and the X???π interaction of C6H6???XOH (X=Cl, Br, I) are investigated by means of full electronic second‐order Møller–Plesset perturbation theory calculations and “quantum theory of atoms in molecules” (QTAIM) studies. The binding energies, binding distances, infrared vibrational frequencies, and electron densities at the bond critical points (BCPs) of the hydrogen bonds and halogen bonds prove that the addition of the Li???π interaction to benzene weakens the H???π and X???π interactions. The influences of the Li???π interaction on H???π interactions are greater than those on X???π interactions; the influences of the H???π interactions on the Li???π interaction are greater than X???π interactions on Li???π interaction. The greater the influence of Li???π interaction on H/X???π interactions, the greater the influences of H/X???π interactions on Li???π interaction. QTAIM studies show that the intermolecular interactions of C6H6???HOX and C6H6???XOH are mainly of the π type. The electron densities at the BCPs of hydrogen bonds and halogen bonds decrease on going from bimolecular complexes to termolecular complexes, and the π‐electron densities at the BCPs show the same pattern. Natural bond orbital analyses show that the Li???π interaction reduces electron transfer from C6H6 to HOX and XOH.  相似文献   

6.
7.
8.
A synthetic strategy for the generation of new molecular species utilizing a provision of nature is presented. Nano‐dimensional (23(2)×21(1)×16(1) Å3) hetero‐four‐layered trimetallacyclophanes were constructed by proof‐of‐concept experiments that utilize a suitable combination of π???π interactions between the central aromatic rings, tailor‐made short/long spacer tridentate donors, and the combined helicity. The behavior of the unprecedented four‐layered metallacyclophane system offers a landmark in the development of new molecular systems.  相似文献   

9.
Protein structure and function is dependent on myriad noncovalent interactions. Direct detection and characterization of these weak interactions in large biomolecules, such as proteins, is experimentally challenging. Herein, we report the first observation and measurement of long‐range “through‐space” scalar couplings between methyl and backbone carbonyl groups in proteins. These J couplings are indicative of the presence of noncovalent C−H⋅⋅⋅π hydrogen‐bond‐like interactions involving the amide π network. Experimentally detected scalar couplings were corroborated by a natural bond orbital analysis, which revealed the orbital nature of the interaction and the origins of the through‐space J couplings. The experimental observation of this type of CH⋅⋅⋅π interaction adds a new dimension to the study of protein structure, function, and dynamics by NMR spectroscopy.  相似文献   

10.
11.
The role of intramolecular metal???π‐arene interactions has been investigated in the solid‐state structures of a series of main group compounds supported by the bulky amide ligands, [N(tBuAr)(SiR3)]? (tBuAr=2,6‐(CHPh2)2‐4‐tBuC6H2, R=Me, Ph). The lithium and potassium amide salts showed different patterns of solvation and demonstrated that the SiPh3 substituent is able to be involved in stabilizing the electrophilic metal. These group 1 metal compounds served as ligand transfer reagents to access a series of bismuth(III) halides. Chloride extraction from Bi(N{tBuAr}{SiPh3})Cl2 using AlCl3 afforded the 1:1 salt [Bi(N{tBuAr}{SiPh3})Cl][AlCl4]. This was accompanied by a significant rearrangement of the stabilizing π‐arene contacts in the solid‐state. Attempted preparation of the corresponding tetraphenylborate salt resulted in phenyl‐transfer and generation of the neutral Bi(N{tBuAr}{SiPh3})(Ph)Cl.  相似文献   

12.
13.
14.
15.
Azoheteroarene photoswitches have attracted attention due to their unique properties. We present the stationary photochromism and ultrafast photoisomerization mechanism of thiophenylazobenzene (TphAB). It demonstrates impressive fatigue resistance and photoisomerization efficiency, and shows favorably separated (E)‐ and (Z)‐isomer absorption bands, allowing for highly selective photoconversion. The (Z)‐isomer of TphAB adopts an unusual orthogonal geometry where the thiophenyl group is perfectly perpendicular to the phenyl group. This geometry is stabilized by a rare lone‐pair???π interaction between the S atom and the phenyl group. The photoisomerization of TphAB occurs on the sub‐ps to ps timescale and is governed by this interaction. Therefore, the adoption and disruption of the orthogonal geometry requires significant movement along the inversion reaction coordinates (CNN and NNC angles). Our results establish TphAB as an excellent photoswitch with versatile properties that expand the application possibilities of AB derivatives.  相似文献   

16.
17.
Attractive interactions between a substituted benzene ring and an α‐substituted acetate group were determined experimentally by using the triptycene model system. The attractive interaction correlates well with the Hammett constants σm (R2=0.90), but correlates much better with the acidity of the α‐protons (R2=0.98).  相似文献   

18.
Modern supramolecular chemistry is overwhelmingly based on non‐covalent interactions involving organic architectures. However, the question of what happens when you depart from this area to the supramolecular chemistry of structures based on non‐carbon frameworks remains largely unanswered, and is an area that potentially provides new directions in molecular activation, host–guest chemistry, and biomimetic chemistry. In this work, we explore the unusual host–guest chemistry of the pentameric macrocycle [{P(μ‐NtBu}2NH]5 with a range of anionic and neutral guests. The polar coordination site of this host promotes new modes of guest encapsulation via hydrogen bonding with the π systems of the unsaturated C≡C and C≡N bonds of acetylenes and nitriles as well as with the PCO? anion. Halide guests can be kinetically locked within the structure by oxidation of the phosphorus periphery by oxidation to PV. Our study underscores the future promise of p‐block macrocyclic chemistry.  相似文献   

19.
A series of molecular metalla[2]catenanes featuring Cp*Ir vertices have been prepared by the template‐free, coordination‐driven self‐assembly of dinuclear iridium acceptors and 1,5‐bis[2‐(4‐pyridyl)ethynyl]anthracene donors. The metalla[2]catenanes were formed by using a strategically selected linker type that is capable of participating in sandwich‐type π–π stacking interactions. In the solid state, the [2]catenanes adopt two different configurations depending on the halogen atoms at the dinuclear metal complex bridge. Altering the solvent or the concentration, as well as the addition of guest molecules, enabled controlled transformations between metalla[2]catenanes and tetranuclear metallarectangles.  相似文献   

20.
We designed M1???C6H5X???HM2 (M1=Li+, Na+; X=Cl, Br; M2=Li, Na, BeH, MgH) complexes to enhance halogen–hydride halogen bonding with a cation–π interaction. The interaction strength has been estimated mainly in terms of the binding distance and the interaction energy. The results show that halogen–hydride halogen bonding is strengthened greatly by a cation–π interaction. The interaction energy in the triads is two to six times as much as that in the dyads. The largest interaction energy is ?8.31 kcal mol?1 for the halogen bond in the Li+???C6H5Br???HNa complex. The nature of the cation, the halogen donor, and the metal hydride influence the nature of the halogen bond. The enhancement effect of Li+ on the halogen bond is larger than that of Na+. The halogen bond in the Cl donor has a greater enhancement than that in the Br one. The metal hydride imposes its effect in the order HBeH<HMgH<HNa<HLi for the Cl complex and HBeH<HMgH<HLi<HNa for the Br complex. The large cooperative energy indicates that there is a strong interplay between the halogen–hydride halogen bonding and the cation–π interaction. Natural bond orbital and energy decomposition analyses indicate that the electrostatic interaction plays a dominate role in enhancing halogen bonding by a cation–π interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号