首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The superoxide radical anion (O2.?) is biologically toxic and contributes to the pathogenesis of various diseases. Here we describe the superoxide dismutase (SOD) activity of human serum albumin (HSA) complexed with a single CuII ion at the N‐terminal end (HSA–Cu complex). The structure of this naturally occurring copper‐coordinated blood serum protein has been characterized by several physicochemical measurements. The O2.? dismutation ability of the HSA–Cu (1:1) complex is almost the same as that of the well‐known SOD mimics, such as MnIII‐tetrakis(N‐methylpyridinium)porphyrin. Interestingly, the HSA–Cu complex does not induce a subsequent Fenton reaction to produce the hydroxyl radical (OH.), which is one of the most harmful reactive oxygen species.  相似文献   

2.
The reduction of fullerene C60 by zinc dust in the presence of crystal violet cations (CV+) yielded a deep‐blue solution, from which crystals of (CV+)(C60.?) ? 0.5 C6H4Cl2 ( 1 ) were obtained by slow mixing with n‐hexane. The salt contained isolated, closely packed zigzagged chains that were composed of C60.? radical anions with a uniform interfullerene center‐to‐center distance of 9.98 Å. In spite of the close proximity of the fullerenes, they did not dimerize, owing to spatial separation by the phenyl substituents of CV+. The room‐temperature conductivity of compound 1 was 3×10?2 S cm?1 along the fullerene chains. The salt exhibited semiconducting behavior, with an activation energy of Ea=167 meV. Spins localized on C60.? were antiferromagnetically coupled within the fullerene chains, with a Weiss temperature of ?19 K without long‐range magnetic ordering down to 1.9 K.  相似文献   

3.
Poly(trifluoromethyl)fullerene S6‐C60(CF3)12 was reduced by sodium fluorenone ketyl in the presence of (PPN)Cl (PPN=bis(triphenylphosphine)iminium) to afford the salt (PPN)[C60(CF3)12] ( 1 ), which contains C60(CF3)12.? radical anions. In the crystal structure of 1 , C60(CF3)12.? layers alternate with the PPN+ cations. There are short F ??? F contacts between C60(CF3)12.? radical anions within the layers but no C ??? C contacts. DFT calculations revealed that the negative charge on C60(CF3)12.? is distributed mainly between sp2 carbon and fluorine atoms, whereas spin density is localized mainly on the fullerene‐cage sp2 carbon atoms. IR and UV/Vis/NIR spectra in the solid state and solution showed characteristic changes relative to those of neutral S6‐C60(CF3)12 due to the formation of radical anions. The solid‐state electronic spectrum of 1 exhibits a single broad band at 738 nm attributed to C60(CF3)12.?. Crystals of 1 show a narrow EPR signal with g=2.0025 (ΔH=0.45 mT) at 300 K. The temperature dependence of the integral intensity follows the Curie–Weiss law with a negative Weiss temperature of ?11.8 K (30–300 K) indicating antiferromagnetic interaction of spins. This dependence was approximated by the Heisenberg model for one‐dimensional chains of antiferromagnetically interacting spins with exchange interaction J/kB=?9.1 K. It was assumed that magnetic interaction between the C60(CF3)12.? spins in the layers is mediated by short F ??? F contacts.  相似文献   

4.
An efficient functional mimic of the photosynthetic antenna‐reaction center has been designed and synthesized. The model contains a near‐infrared‐absorbing aza‐boron‐dipyrromethene (ADP) that is connected to a monostyryl boron‐dipyrromethene (BDP) by a click reaction and to a fullerene (C60) using the Prato reaction. The intramolecular photoinduced energy and electron‐transfer processes of this triad as well as the corresponding dyads BDP‐ADP and ADP‐C60 have been studied with steady‐state and time‐resolved absorption and fluorescence spectroscopic methods in benzonitrile. Upon excitation, the BDP moiety of the triad is significantly quenched due to energy transfer to the ADP core, which subsequently transfers an electron to the fullerene unit. Cyclic and differential pulse voltammetric studies have revealed the redox states of the components, which allow estimation of the energies of the charge‐separated states. Such calculations show that electron transfer from the singlet excited ADP (1ADP*) to C60 yielding ADP.+‐C60.? is energetically favorable. By using femtosecond laser flash photolysis, concrete evidence has been obtained for the occurrence of energy transfer from 1BDP* to ADP in the dyad BDP‐ADP and electron transfer from 1ADP* to C60 in the dyad ADP‐C60. Sequential energy and electron transfer have also been clearly observed in the triad BDP‐ADP‐C60. By monitoring the rise of ADP emission, it has been found that the rate of energy transfer is fast (≈1011 s?1). The dynamics of electron transfer through 1ADP* has also been studied by monitoring the formation of C60 radical anion at 1000 nm. A fast charge‐separation process from 1ADP* to C60 has been detected, which gives the relatively long‐lived BDP‐ADP.+C60.? with a lifetime of 1.47 ns. As shown by nanosecond transient absorption measurements, the charge‐separated state decays slowly to populate mainly the triplet state of ADP before returning to the ground state. These findings show that the dyads BDP‐ADP and ADP‐C60, and the triad BDP‐ADP‐C60 are interesting artificial analogues that can mimic the antenna and reaction center of the natural photosynthetic systems.  相似文献   

5.
Novel photosynthetic reaction center model compounds of the type donor2–donor1–acceptor, composed of phenothiazine, BF2‐chelated dipyrromethene (BODIPY), and fullerene, respectively, have been newly synthesized using multistep synthetic methods. X‐ray structures of three of the phenothiazine‐BODIPY intermediate compounds have been solved to visualize the substitution effect caused by the phenothiazine on the BODIPY macrocycle. Optical absorption and emission, computational, and differential pulse voltammetry studies were systematically performed to establish the molecular integrity of the triads. The N‐substituted phenothiazine was found to be easier to oxidize by 60 mV compared to the C‐substituted analogue. The geometry and electronic structures were obtained by B3LYP/6‐31G(dp) calculations (for H, B, N, and O) and B3LYP/6‐31G(df) calculations (for S) in vacuum, followed by a single‐point calculation in benzonitrile utilizing the polarizable continuum model (PCM). The HOMO?1, HOMO, and LUMO were, respectively, on the BODIPY, phenothiazine and fullerene entities, which agreed well with the site of electron transfer determined from electrochemical studies. The energy‐level diagram deduced from these data helped in elucidating the mechanistic details of the photochemical events. Excitation of BODIPY resulted in ultrafast electron transfer to produce PTZ–BODIPY.+–C60.?; subsequent hole shift resulted in PTZ.+–BODIPY–C60.? charge‐separated species. The return of the charge‐separated species was found to be solvent dependent. In nonpolar solvents the PTZ.+–BODIPY–C60.? species populated the 3C60* prior to returning to the ground state, while in polar solvent no such process was observed due to relative positioning of the energy levels. The 1BODIPY* generated radical ion‐pair in these triads persisted for few nanoseconds due to electron transfer/hole‐shift mechanism.  相似文献   

6.
A new salt, (MDABCO+)(C60.?) ( 1 ; MDABCO+=N‐methyldiazabicyclooctanium cation), was obtained as single crystals. The crystal structure of 1 determined at 250 and 100 K showed 3D close packing of fullerenes with eight fullerene neighbors for each C60.?. These neighbors are located at 10.01–10.11 Å center‐to‐center distances (250 K) and van der Waals interfullerene C???C contacts are formed with four fullerene neighbors arranged in the bc plane. Fullerene ordering observed below 160 K is accompanied by the appearance of one and a half independent C60.? and trebling of the unit cell along the b axis. Fullerenes are packed closer to each other at 100 K. As a result, fullerenes are located in the three‐dimensional packing at 9.91–10.12 Å center‐to‐center distances and 18 short interfullerene C???C contacts are formed for each C60.?. Although they are closed packed, fullerenes are not dimerized down to 1.9 K. Magnetic data indicate strong antiferromagnetic coupling of spins in the 70–300 K range with a Weiss temperature of Θ=?118 K. Magnetic susceptibility shows a round maximum at 46 K. Such behavior can be described well by the Heisenberg model for square two‐dimensional antiferromagnetic coupling of spins with an exchange interaction of J/kB=?25.3 K. This magnetic coupling is one of the strongest observed for C60.? salts.  相似文献   

7.
Many biomolecules contain photoactive reducing agents, such as reduced nicotinamide adenine dinucleotide (NADH) and 6‐thioguanine (6‐TG) incorporated into DNA through drug metabolism. These reducing agents may produce reactive oxygen species under UVA irradiation or act as electron donors in various media. The interactions of C60 fullerenes with biological reductants and light energy, especially via the Type‐I electron‐transfer mechanism, are not fully understood although these factors are often involved in toxicity assessments. The two reductants employed in this work were NADH for aqueous solutions and 6‐TG for organic solvents. Using steady‐state photolysis and electrochemical techniques, we showed that under visible light irradiation, the presence of reducing agents enhanced C60‐mediated Type‐I reactions that generate superoxide anion (O2.?) at the expense of singlet oxygen (1O2) production. The quantum yield of O2.? production upon visible light irradiation of C60 is estimated below 0.2 in dipolar aprotic media, indicating that the majority of triplet C60 deactivate via Type‐II pathway. Upon UVA irradiation, however, both C60 and NADH undergo photochemical reactions to produce O2.?, which could lead to a possible synergistic toxicity effects. C60 photosensitization via Type‐I pathway is not observed in the absence of reducing agents.  相似文献   

8.
Synthesis of molecular containers capable of incorporating multiple fullerenes remains challenging. Reported here is that room‐temperature mixing of metal ions with W‐shaped bispyridine ligands featuring polyaromatic panels results in the quantitative formation of a peanut‐shaped M2L4 capsule. The capsule reversibly converts into two molecules of an ML2 double tube in response to changes in the solvent. Notably, the capsule allows the incorporation of two fullerene molecules into the connected two spherical cavities at room temperature. The close proximity yet non‐contact of the encapsulated C60 molecules, with a separation of 6.4 Å, was revealed by X‐ray crystallographic analysis. The resultant, unusual fullerene dimer undergoes sequential reduction within the capsule to generate (C60.?)2, C60.??C602?, and (C602?)2 species. Furthermore, temperature‐controlled stepwise incorporation of two C60 molecules into the capsule is demonstrated.  相似文献   

9.
Donor–acceptor distance, orientation, and photoexcitation wavelength are key factors in governing the efficiency and mechanism of electron‐transfer reactions both in natural and synthetic systems. Although distance and orientation effects have been successfully demonstrated in simple donor–acceptor dyads, revealing excitation‐wavelength‐dependent photochemical properties demands multimodular, photosynthetic‐reaction‐center model compounds. Here, we successfully demonstrate donor– acceptor excitation‐wavelength‐dependent, ultrafast charge separation and charge recombination in newly synthesized, novel tetrads featuring bisferrocene, BF2‐chelated azadipyrromethene, and fullerene entities. The tetrads synthesized using multistep synthetic procedure revealed characteristic optical, redox, and photo reactivities of the individual components and featured “closely” and “distantly” positioned donor–acceptor systems. The near‐IR‐emitting BF2‐chelated azadipyrromethene acted as a photosensitizing electron acceptor along with fullerene, while the ferrocene entities acted as electron donors. Both tetrads revealed excitation‐wavelength‐dependent, photoinduced, electron‐transfer events as probed by femtosecond transient absorption spectroscopy. That is, formation of the Fc+–ADP–C60.? charge‐separated state upon C60 excitation, and Fc+–ADP.?–C60 formation upon ADP excitation is demonstrated.  相似文献   

10.
High oxidation potential perfluorinated zinc phthalocyanines (ZnFnPcs) are synthesised and their spectroscopic, redox, and light‐induced electron‐transfer properties investigated systematically by forming donor–acceptor dyads through metal–ligand axial coordination of fullerene (C60) derivatives. Absorption and fluorescence spectral studies reveal efficient binding of the pyridine‐ (Py) and phenylimidazole‐functionalised fullerene (C60Im) derivatives to the zinc centre of the FnPcs. The determined binding constants, K, in o‐dichlorobenzene for the 1:1 complexes are in the order of 104 to 105 M ?1; nearly an order of magnitude higher than that observed for the dyad formed from zinc phthalocyanine (ZnPc) lacking fluorine substituents. The geometry and electronic structure of the dyads are determined by using the B3LYP/6‐31G* method. The HOMO and LUMO levels are located on the Pc and C60 entities, respectively; this suggests the formation of ZnFnPc.+–C60Im.? and ZnFnPc.+–C60Py.? (n=0, 8 or 16) intra‐supramolecular charge‐separated states during electron transfer. Electrochemical studies on the ZnPc–C60 dyads enable accurate determination of their oxidation and reduction potentials and the energy of the charge‐separated states. The energy of the charge‐separated state for dyads composed of ZnFnPc is higher than that of normal ZnPc–C60 dyads and reveals their significance in harvesting higher amounts of light energy. Evidence for charge separation in the dyads is secured from femtosecond transient absorption studies in nonpolar toluene. Kinetic evaluation of the cation and anion radical ion peaks reveals ultrafast charge separation and charge recombination in dyads composed of perfluorinated phthalocyanine and fullerene; this implies their significance in solar‐energy harvesting and optoelectronic device building applications.  相似文献   

11.
A new fulleride, (K[DB18C6])4(C60)5?12 THF, was prepared in solution using the “break‐and‐seal” approach by reacting potassium, fullerene, and dibenzo[18]crown‐6 in tetrahydrofuran. Single crystals were grown from solution by the modified “temperature difference method”. X‐ray analysis was performed revealing a reversible phase transition occurring on cooling. Three different crystal structures of the title compound at different temperatures of data acquisition are addressed in detail: the “high‐temperature phase” at 225 K (C2, Z=2, a=49.055(1), b=15.075(3), c=18.312(4) Å, β=97.89(3)°), the “transitional phase” at 175 K (C2 m, Z=2, a=48.436(5), b=15.128(1), c=18.280(2) Å, β=97.90(1)°), and the “low‐temperature phase” at 125 K (Cc, Z=4, a=56.239(1), b=15.112(3), c=36.425(7) Å, β=121.99(1)°). On cooling, partial radical recombination of C60.? into the (C60)22? dimeric dianion occurs; this is first time that the fully ordered dimer has been observed. Further cooling leads to formation of a superstructure with doubled cell volume in a different space group. Below 125 K, C60 exists in the structure in three different bonding states: in the form of C60.? radical ions, (C60)22? dianions, and neutral C60, this being without precedent in the fullerene chemistry, as well. Experimental observations of one conformation exclusively of the fullerene dimer in the crystal structure are further explained on the basis of DFT calculations considering charge distribution patterns. Temperature‐dependent measurements of magnetic susceptibility at different magnetic fields confirm the phase transition occurring at about 220 K as observed crystallographically, and enable for unambiguous charge assignment to the different C60 species in the title fulleride.  相似文献   

12.
Oxygenation of fullerene took place under mechanical stressing by a simple vibration mill in an oxygen atmosphere at 1 atm. Milled products were mixtures of poly-oxidized fullerene, C60On, containing C-O-C and CO bonds. We observed a concurrent reaction as well, that is, polymerization of C60 and C60O. The average number of oxygen, n, of the overall products obtained by milling for 5 h was 8.6 per molecule of C60. We confirmed generation of singlet oxygen during the present mechanochemical reaction by an ESR spin trapping method. Trapping of 1O2 was completely inhibited the oxygenation of fullerene. Formation of 1O2 is attributed to the energy transfer from mechanically excited state of fullerene and plays a decisive role on the present oxygenation of fullerene under mechanical stressing in O2. In contrast, no 1O2 was observed by mechanically stressing the conventional photo-sensitizer, rosebengal. The difference in the behavior of C60 and rosebengal is interpreted in terms of molecular deformation, being much easier for a 3D molecule, C60, than a planar molecule, in line with the concept of inverse Jahn-Teller effects.  相似文献   

13.
(MDABCO+)(C60.?)(TPC) ( 1 ), in which MDABCO+ is N‐methyldiazabicyclooctanium, TPC is triptycene, and both have threefold symmetry, is a rare example of a fullerene‐based quasi‐2D metal and contains closely packed hexagonal fullerene layers with interfullerene center‐to‐center distances of 10.07 Å at 300 K. Evidence for the metallic nature of 1 was obtained by optical and microwave conductivity measurements on single crystals. The metal is characterized by a nontypical Drude response and relatively large optical mass (m*/m0=6.7). The latter indicates a narrow‐band nature, which is consistent with the calculated bandwidth of 0.10–0.15 eV. The coexistence of metallic and antiferromagnetic nonmetallic 2D layers was observed in 1 above 200–230 K. It was assumed that the nonmetallic layers undergo a transition to the metallic state below 200 K due to ordering of the fullerene and cationic sublattices. New layered complex (MQ+)(C60.?)(TPC) ( 2 ) with a hexagonal arrangement of C60.? was obtained by increasing the interfullerene distance with the bulkier N‐methylquinuclidinium cations (MQ+) having threefold symmetry. The structure of 2 is characterized by increased interfullerene center‐to‐center distances in the layers (10.124, 10.155, and 10.177 Å at 250 K). Unit‐cell doubling parallel to the 2D layer (along the b axis) was observed at low temperatures. In contrast to metallic 1 , 2 exhibits a nonmetallic spin‐frustrated state with an antiferromagnetic interaction of spins (the Weiss temperature is ?27 K) and no magnetic ordering down to 1.9 K. It was supposed that the expanded interfullerene distances in the triangular arrangement decrease the bandwidth and suppress metallic conductivity in 2 , and thus a Mott–Hubbard insulating state with antiferromagnetically frustrated spins results.  相似文献   

14.
The O2 activation and CO oxidation on nitrogen‐doped C59N fullerene are investigated using first‐principles calculations. The calculations indicate that the C59N fullerene is able to activate O2 molecules resulting in the formation of superoxide species ( ) both kinetically and thermodynamically. The active superoxide can further react with CO to form CO2 via the Eley–Rideal mechanism by passing a stepwise reaction barrier of only 0.20 eV. Ab initio molecular dynamics (AIMD) simulation is carried out to evidence the feasibility of the Eley–Rideal mechanism. In addition, the second CO oxidation takes place with the remaining atomic O without any activation energy barrier. The full catalytic reaction cycles can occur energetically favorable and suggest a two‐step Eley–Rideal mechanism for CO oxidation with O2 catalyzed by the C59N fullerene. The catalytic properties of high percentage nitrogen‐doped fullerene (C48N12) is also examined. This work contributes to designing higher effective carbon‐based materials catalysts by a dependable theoretical insight into the catalytic properties of the nitrogen‐doped fullerene. © 2017 Wiley Periodicals, Inc.  相似文献   

15.
Overproduction of superoxide anion (O2.?), the primary cellular reactive oxygen species (ROS), is implicated in various human diseases. To reduce cellular oxidative stress caused by overproduction of superoxide, we developed a compound that reacts with O2.? to release a persulfide (RSSH), a type of reactive sulfur species related to the gasotransmitter hydrogen sulfide (H2S). Termed SOPD‐NAC , this persulfide donor reacts specifically with O2.?, decomposing to generate N‐acetyl cysteine (NAC) persulfide. To enhance persulfide delivery to cells, we conjugated the SOPD motif to a short, self‐assembling peptide (Bz‐CFFE‐NH2) to make a superoxide‐responsive, persulfide‐donating peptide ( SOPD‐Pep ). Both SOPD‐NAC and SOPD‐Pep delivered persulfides/H2S to H9C2 cardiomyocytes and lowered ROS levels as confirmed by quantitative in vitro fluorescence imaging studies. Additional in vitro studies on RAW 264.7 macrophages showed that SOPD‐Pep mitigated toxicity induced by phorbol 12‐myristate 13‐acetate (PMA) more effectively than SOPD‐NAC and several control compounds, including common H2S donors.  相似文献   

16.
A bioluminescent assay based on a system of coupled enzymatic reactions catalyzed by bacterial luciferase and NADH:FMN‐oxidoreductase was developed to monitor toxicity and antioxidant activity of bioactive compounds. The assay enables studying toxic effects at the level of biomolecules and physicochemical processes, as well as determining the toxicity of general and oxidative types. Toxic and detoxifying effects of bioactive compounds were studied. Fullerenols, perspective pharmaceutical agents, nanosized particles, water‐soluble polyhydroxylated fullerene‐60 derivatives were chosen as bioactive compounds. Two homologous fullerenols with different number and type of substituents, C60O2–4(OH)20–24 and Fe0.5C60(OH) xOy (x + y = 40–42), were used. They suppressed bioluminescent intensity at concentrations >0.01 g L?1 and >0.001 g L?1 for C60O2–4(OH)20‐24 and Fe0.5C60(OH)xOy, respectively; hence, a lower toxicity of C60O2–4(OH)20–24 was demonstrated. Antioxidant activity of fullerenols was studied in model solutions of organic and inorganic oxidizers; changes in toxicities of general and oxidative type were determined; detoxification coefficients were calculated. Fullerenol C60O2–4(OH)20–24 revealed higher antioxidant ability at concentrations 10?17?10?5 g L?1. The difference in the toxicity and antioxidant activity of fullerenols was explained through their electron donor/acceptor properties and different catalytic activity. Principles of bioluminescent enzyme assay application for evaluating the toxic effect and antioxidant activity of bioactive compounds were summarized and the procedure steps were described.  相似文献   

17.
Enzymatic complexes, constructed by linear‐dendritic copolymers and laccase, are used for the unprecedented one‐pot biotransformation of fullerene (C60) into epoxide‐ and hydroxyl‐derivatives under mild and environmentally friendly reaction conditions (45 °C and aqueous medium). The reaction is catalyzed by mediator pairs ‐ N‐hydroxy‐5‐norbornene‐2,3‐dicarboxylic acid imide/1‐Hydroxybenzotriazole or 2,2′‐Azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid)/1‐Hydroxybenzotriazole used in equimolar amounts. After 24 and 48 h, the biotransformation products ? C60On, C60(OH)n, C60(H)n(OH)n, and/or C60On(H)m(OH)m range between 50 and 78%, respectively. Their structure is revealed by FTIR, NMR, and mass‐spectrometry. The mechanism of the process is discussed and elucidated. The reaction procedure allows the repeated usage of the enzyme/linear‐dendritic complex, which retains its catalytic activity after several cycles. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
The superoxide anion (O2.?) is widely engaged in the regulation of cell functions and is thereby intimately associated with the onset and progression of many diseases. To ascertain the pathological roles of O2.? in related diseases, developing effective methods for monitoring O2.? in biological systems is essential. Fluorescence imaging is a powerful tool for monitoring bioactive molecules in cells and in vivo owing to its high sensitivity and high temporal‐spatial resolution. Therefore, increasing numbers of fluorescent imaging probes have been constructed to monitor O2.? inside live cells and small animals. In this minireview, we summarize the methods for design and application of O2.?‐responsive fluorescent probes. Moreover, we present the challenges for detecting O2.? and suggestions for constructing new fluorescent probes that can indicate the production sites and concentration changes in O2.? as well as O2.?‐associated active molecules in living cells and in vivo.  相似文献   

19.
Modeling of the addition of various radicals to C60 fullerene is currently an active research area. However, the radicals considered are not able to adequately model polymeric radicals. In this work, we have performed a theoretical study of the possible reactions of C60 fullerene with 1‐n‐phenylpropyl radicals, which are used to model polystyrene radicals. Several possible ways of subsequent addition of up to four 1‐phenylpropyl radicals to C60 have been analyzed, the structures of the intermediates have been defined and thermal properties, such as the activation enthalpies of the corresponding reactions, have been calculated using density functional theory with the approximation of PBE/3z. It is shown that the topology of the spin density distribution on the fullerenyl radical causes regioselectivity for further radical addition. According to the energetic characteristics of the reactions, we assume the possibility of formation of products of one‐, two‐, three‐, and four‐ addition of the growth radical to the fullerene core in radical polymerization of styrene in the presence of C60 fullerene. © 2016 Wiley Periodicals, Inc.  相似文献   

20.
Two salts of the aromatic hydrocarbon decacyclene, {cryptand[2.2.2](Cs+)} (decacyclene.?) ( 1 ) and {Bu3MeP+}(decacyclene.?) ( 2 ), were obtained. In both salts, decacyclene.? radical anions formed channels occupied by cations. However, corrugated hexagonal decacyclene.? layers could be outlined in the crystal structure of 1 with several side‐by‐side C???C approaches. The decacyclene.? radical anions showed strong distortion in both salts, deviating from the C3 symmetry owing to the repulsion of closely arranged hydrogen atoms and the Jahn‐Teller effect. Radical anions showed intense unusually low energy absorption in the IR‐range, with maxima at 4800 and 6000 cm?1. According to the carculations, these bands can originate from the SOMO‐LUMO+1 and SOMO‐LUMO+2 transitions, respectively. Radical anions exhibited a S=1/2 spin state, with an effective magnetic moment of 1.72 μB at 300 K. The decacyclene.? spin antiferromagnetically coupled with a Weiss temperature of ?11 K. Spin ordering was not observed down to 1.9 K owing to spin frustration in the hexagonal decacyclene.? layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号