首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 154 毫秒
1.
New supramolecular assemblies based on cyclodextrin and adamantane were prepared. Two methacrylate monomers bearing cyclodextrin and adamantane were synthesized, and copolymerized with poly(ethylene glycol) methyl ether methacrylate, (PEGMA, 300 g/mol), by free radical polymerization. Copolymers bearing pendent cyclodextrin and adamantane were characterized by NMR, FTIR, TGA, SEC, Differential scanning calorimetry (DSC), and UV‐visible spectrophotometer. All copolymers showed two distinct glass transitions. The specific interaction between pendent adamantyl and cyclodextrin was examined by 1H‐NMR. The viscoelastic properties of supramolecular assemblies were investigated with frequency and temperature sweep experiments. The specific host‐guest interaction between pendent adamantyl and cyclodextrin lead to large increases of the viscosity; and depending on the concentration of these groups, also to gel formation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 581–592, 2010  相似文献   

2.
Multitopic dibenzylammonium derivatives ( 4 ) of C60 were prepared by Bingel reactions of C60 with a malonate diester ( 2 ) containing two t‐BOC protected dibenzylamine moieties, followed by deprotection and protonation. Self‐assembly of model pseudorotaxanes 5 from the multidibenzylammonium C60 derivatives with dibenzo‐24‐crown‐8 was studied by 1H NMR spectroscopy and mass spectrometry. Self‐assembly of linear and star‐shaped pseudorotaxanes 8 with up to 12 arms based on polystyrenes bearing terminal DB24C8 host units ( 7 ) and the guest functionalized C60 salts was demonstrated by 1H NMR spectroscopy and solution phase viscometry. These studies provide further evidence of the potential of supramacromolecular chemistry in construction of complex polymeric architectures. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6472–6495, 2009  相似文献   

3.
Novel amphiphilic comb‐dendronized diblock copolymers composed of hydrophobic Percec‐type dendronized polystyrene block and hydrophilic comb‐like poly(ethylene oxide) grafted polymethacrylate P(PEOMA) block were designed and synthesized via two steps of atom transfer radical polymerization (ATRP). The comb‐like P(PEOMA) prepared by ATRP of macromonomers (PEOMA) with two different molecular weights (Mn = 300 and 475) were used to initiate the sequent ATRP of dendritic styrene macromonomer (DS). The molecular weights and compositions of the obtained block copolymers were determined by 1H NMR analysis. The copolymers with relatively narrow polydispersities (1.27–1.38) were thus obtained. The bulk properties of comb‐dendronized block copolymers were studied by using differential scanning calorimetry, polarized optical microscopy and wide‐angle X‐ray diffraction (WAXD). Similar to dendronized homopolymers, the block copolymers exhibited hexagonal columnar liquid‐crystalline phase structure. By using such amphiphilic comb‐dendronized block copolymers as building blocks, the rich self‐assembly morphologies, such as twisted string, vesicle, and large compound micelle (LCM), were obtained in a mixture of CH3OH and THF. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4205–4217, 2008  相似文献   

4.
Combining the concepts of supramolecular polymers and dendronized polymers provides the opportunity to create bulky polymers with easy structural modification and tunable properties. In the present work, a novel class of side‐chain supramolecular dendronized polymethacrylates is prepared through the host–guest interaction. The host is a linear polymethacrylate (as the backbone) attached in each repeat unit with a β‐cyclodextrin (β‐CD) moiety, and the guest is constituted with three‐fold branched oligoethylene glycol (OEG)‐based first‐ (G1) and second‐generation (G2) dendrons with an adamantyl group core. The host and guest interaction in aqueous solution leads to the formation of the supramolecular polymers, which is supported with 1H NMR spectroscopy and dynamic light scattering measurements. The supramolecular formation was also examined at different host/guest ratios. The water solubility of hosts and guests increases upon supramolecular formation. The supramolecular polymers show good solubility in water at room temperature, but exhibit thermoresponsive behavior at elevated temperatures. Their thermoresponsiveness is thus investigated with UV/Vis and 1H NMR spectroscopy, and compared with their counterparts formed from individual β‐CD and the OEG dendritic guest. The effect of polymer concentration and molar ratio of host/guest was examined. It is found that the polar interior of the supramolecules contribute significantly to the thermally‐induced phase transitions for the G1 polymer, but this effect is negligible for the G2 polymer. Based on the temperature‐varied proton NMR spectra, it is found that the host–guest complex starts to decompose during the aggregation process upon heating to its dehydration temperature, and this decomposition is enhanced with an increase of solution temperature.  相似文献   

5.
The first‐ and second‐generation dendronized polymers containing azobenzene mesogen were designed and successfully synthesized via free radical polymerization. The chemical structures of the monomers were confirmed by elemental analysis, 1H NMR, and 13C NMR. The molecular characterizations of the polymers were performed with 1H NMR and gel permeation chromatography. The phase structures and transition behaviors were studied using differential scanning calorimetry, polarized light microscopy, and small‐angle X‐ray scatter experiments. The experiment results revealed that the first‐generation dendronized polymer exhibited liquid crystalline behavior of the conventional side‐chain liquid crystalline polymer with azobenzene mesogen, that is, the polymer exhibited smectic phase structure at lower temperature and nematic phase structure at higher temperature. However, the second‐generation dendronized polymers exhibited more versatile intriguing liquid crystalline structures, namely smectic phase structure at lower temperature and columnar nematic phase structure at higher temperature, and moreover, the phase structure still remained before the decomposition temperature. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1149–1159, 2010  相似文献   

6.
A new type of guest has been designed and synthesized for the exo‐type supramolecular functionalization of adamantyl‐urea‐terminated poly(propylene imine) dendrimers. This new type of guest motif features a uriedo methane sulfonic acid moiety that binds very selectively to the surfaces of dendrimers via a combination of noncovalent interactions forming well‐defined complexes. The guest–host properties have been examined for a fifth‐generation adamantyl‐urea‐functionalized poly(propylene imine) dendrimer capable of binding 32 guest molecules and for a model host molecule that can bind only one guest molecule. The guest–host chemistry has been studied with 1H NMR spectroscopy, nuclear Overhauser enhancement spectroscopy NMR spectroscopy, T1‐relaxation NMR experiments, and IR spectroscopy. The 1:32 ratio with the dendrimer has been confirmed unambiguously from 1H NMR spectra of the complex after size exclusion chromatography. Competition experiments with guests bearing a carboxylic acid instead of a sulfonic acid in the binding motif have demonstrated that the sulfonic acid has superior binding strength. Also, the importance of a combination of noncovalent interactions has been shown via competition experiments with a guest lacking the uriedo moiety. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3792–3799, 2004  相似文献   

7.
Three new ureidopyrimidinone(UPy)‐functionalized chain‐transfer agents (CTAs) have been synthesized for use in reversible addition‐fragmentation chain transfer (RAFT) polymerization. These UPy‐CTAs are able to polymerize a wide variety of vinyl monomers to yield UPy‐functionalized polymers, including homopolymers, block copolymers, and amphiphilic block copolymers. These polymers have been characterized via 1H and 13C NMR spectroscopy, gel permeation chromatography (GPC), UV/visible spectroscopy and differential scanning calorimetry (DSC) to demonstrate end‐group fidelity. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

8.
A new kind of dendronized polymer brush with metallo‐supramolecular polymer side chains was fabricated by a combination of macromonomer and graft‐to approach. The alternating copolymers of maleic anhydride and styryl macromonomers pendant with Fréchet‐type dendrons of three generations were reported previously. In this article, terpyridine groups were introduced along the backbone of the dendronized polymers through the amidolysis of anhydride groups. The terpyridine functionalized PEO linear chains were then incorporated through the complexation of terpyridine and Ru(II) ion. Thus, dendronized polymer brushes with amphiphilic properties were synthesized. AFM analysis showed worm‐like single molecular morphologies of the polymers of three generations, and 1H NMR analysis indicated that such molecular brushes had an amphiphilic nature in solution. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3303–3310, 2007  相似文献   

9.
A 1H NMR and rheological study of host‐guest complexation interactions between three β‐cyclodextrin and three adamantyl substituted poly(acrylate)s, and also between them and adamantan‐1‐carboxylate and native β‐cyclodextrin, respectively, is reported. A close correllation between molecular level interactions and macroscopic characteristics of polymer networks in aqueous solution exists. It is found that intra‐ and intermolecular host‐guest complexation between the host β‐cyclodextrin and guest adamantyl substituents and the length of the aliphatic tether between them and the poly(acrylate) backbone have important roles. Dominantly, steric effects and competitive intra‐ and intermolecular host‐guest complexation are found to control poly(acrylate) isomeric interstrand linkage in polymer network formation. The preparations of five new 3% randomly substituted poly(acrylate)s are reported. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1818–1825, 2010  相似文献   

10.
Herein, we report the host–guest‐type complex formation between the host molecules cucurbit[7]uril (CB[7]), β‐cyclodextrin (β‐CD), and dibenzo[24]crown‐8 ether (DB24C8) and a newly synthesized triphenylamine (TPA) derivative 1 X3 as the guest component. The host–guest complex formation was studied in detail by using 1H NMR, 2D NOESY, UV/Vis fluorescence, and time‐resolved emission spectroscopy. The chloride salt of the TPA derivative was used for recognition studies with CB[7] and β‐CD in an aqueous medium. The restricted internal rotation of the guest molecule on complex formation with either of these two host molecules was reflected in the enhancement of the emission quantum yield and the average excited‐state lifetime for the triphenylamine‐based excited states. Studies with DB24C8 as the host molecule were performed in dichloromethane, a medium that maximizes the noncovalent interaction between the host and guest fragments. The Förster resonance energy transfer (FRET) process involving DB24C8 and 1 (PF6)3, as the donor and acceptor fragments, respectively, was established by electrochemical, steady‐state emission, and time‐correlated single‐photon counting studies.  相似文献   

11.
A modular approach toward the synthesis of polymers containing dendron groups as side chains is developed using the Diels–Alder “click” reaction. For this purpose, a styrene‐based polymer appended with anthracene groups as reactive side chains was synthesized. First through third‐generation polyester dendrons containing furan‐protected maleimide groups at their focal point were synthesized. Facile, reagent‐free, thermal Diels–Alder cycloaddition between the anthracene‐containing polymer and latent‐reactive dendrons leads to quantitative functionalization of the polymer chains to afford dendronized polymers. The efficiency of this functionalization step was monitored using 1H and 13C NMR spectroscopy and FTIR and UV–vis spectrometry. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 410–416, 2010  相似文献   

12.
4‐Chloro‐3‐methyl phenyl methacrylate (CMPM) and 8‐quinolinyl methacrylate (8‐QMA) were synthesized through the reaction of 4‐chloro‐3‐methyl phenol and 8‐hydroxy quinoline, respectively, with methacryloyl chloride. The homopolymers and copolymers were prepared by free‐radical polymerization with azobisisobutyronitrile as the initiator at 70 °C. Copolymers of CMPM and 8‐QMA of different compositions were prepared. The monomers were characterized with IR spectroscopy and 1H NMR techniques. The copolymers were characterized with IR spectroscopy. UV spectroscopy was used to obtain the compositions of the copolymers. The monomer reactivity ratios were calculated with the Fineman–Ross method. The molecular weights and polydispersity values of the copolymers were determined with gel permeation chromatography. The thermal stability of the polymers was evaluated with thermogravimetric analysis under a nitrogen atmosphere. The homopolymers and copolymers were tested for their antimicrobial activity againstbacteria, fungi, and yeast. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 157–167, 2005  相似文献   

13.
Statistic and block copolymers exhibiting activated ester side groups were synthesized by reversible addition‐fragmentation chain transfer polymerization in the presence of cumyl dithiobenzoate, benzyl dithiobenzoate, and 4‐cyano‐4‐((thiobenzoyl)sulfanyl)pentanoic acid as chain transfer agents. Pentafluorophenyl methacrylate and pentafluorophenyl 4‐vinylbenzoate were used to enable a sequential functionalization of the obtained copolymers by conversion of the activated esters with different amines. 1H NMR spectroscopy, 19F NMR spectroscopy, and FTIR spectroscopy showed the successful step‐by‐step conversion of the different activated esters by aniline followed by aliphatic amines, thereby realizing a sequential functionalization of block copolymers with just one specific reactive group. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3683–3692, 2010  相似文献   

14.
A novel N‐hydroxy succinimide‐based carbonate monomer that allows direct synthesis of polymers incorporating a reactive carbonate group in the side chain was synthesized. This new monomer was copolymerized with methyl methacrylate and poly(ethylene glycol) methylether methacrylate using free‐radical polymerization to obtain organo‐ and water‐soluble reactive copolymers. Copolymerization of the activated carbonate monomer with an azide‐containing monomer and N‐hydroxy succinimide‐containing activated ester monomer provided orthogonally functionalizable copolymers. The pendant reactive carbonate groups of the copolymers were functionalized with amines to obtain carbamates. Polymers capable of orthogonal functionalization could be selectively functionalized as desired using subsequent 1,3‐dipolar cycloaddition or amidation reactions. The novel monomer and the copolymers were characterized by 1H‐NMR, 13C‐NMR, and infrared spectroscopy. The efficient stepwise orthogonal functionalization of the copolymers were examined via 1H‐NMR spectroscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
Amphiphilic A3B mikto‐arm copolymers have been synthesized using a t‐butyl‐diphenyl silyl‐based methylglucoside derivative. The latter has been first used as initiator for the polymerization of ε‐caprolactone leading to three‐arm star‐shaped structures followed by several postpolymerization steps to obtain star‐shaped poly(ε‐caprolactone) macroinitiator. Atom transfer radical polymerization (ATRP) of diisopropylidene galactose methacrylate in THF at 60 °C using CuBr ligated with 1,1,4,7,10,10‐hexamethyltriethylenetetramine (HMTETA) as catalytic complex allowed the formation of A3B mikto‐arm copolymers with different compositions and molecular weights. Selective deprotection of sugar protecting groups finally generated amphiphilic mikto‐arm copolymers. The molecular characterization of those copolymers was performed by 1H NMR spectroscopy and gel permeation chromatography (GPC) analysis. The self‐assembly of the copolymers into micellar aggregates and the related critical micellization concentration (CMC) in aqueous media were determined by dynamic light scattering (DLS) and UV‐visible spectroscopy, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3271–3280, 2010  相似文献   

16.
Amphiphilic, biodegradable block glycopolymers based on poly(ε‐caprolactone) (PCL) with various pendent saccharides were synthesized by combination of ring‐opening polymerization (ROP) and “click” chemistry. PCL macroinitiators obtained by ROP of ε‐caprolactone were used to initiate the ROP of 2‐bromo‐ε‐caprolactone (BrCL) to get diblock copolymers, PCL‐b‐PBrCL. Reaction of the block copolymers with sodium azide converted the bromine groups in the PBrCL block to azide groups. In the final step, click chemistry of alkynyl saccharides with the pendent azide groups of PCL‐b‐PBrCL led to the formation of the amphiphilic block glycopolymers. These copolymers were characterized by 1H NMR spectroscopy and gel permeation chromatography. The self‐assembly behavior of the amphiphilic block copolymers was investigated using transmission electron microscopy and atomic force microscope, spherical aggregates with saccharide groups on the surface were observed, and the aggregates could bind reversibly with Concanavalin A. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3583–3594, 2009  相似文献   

17.
Random copolymers of styrene, p‐azidomethylstyrene and 1H,1H,2H,2H‐perfluorodecyl methacrylate were prepared in two steps involving nitroxide‐mediated radical copolymerization and azidation reaction and further characterized by 1H and 19F NMR, size exclusion chromatography, differential scanning calorimetry, and thermal gravimetric analysis. Ultrathin films of these azidomethyl‐functionalized fluorinated random copolymers, with thicknesses ranging from 20 to 100 nm, were spin coated onto Si substrates and then crosslinked by ultraviolet irradiation resulting in smooth and insoluble crosslinked fluorinated polymer mats. The surface properties of the supported thin films were investigated by X‐ray photoelectron spectroscopy and water contact angle measurements. These tailored photo‐crosslinked coatings afford a versatile control and homogenization of the wetting properties of different organic and inorganic substrates. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3888–3895, 2010  相似文献   

18.
A series of well‐defined amphiphilic triblock copolymers [polyethylene glycol monomethyl ether]‐block‐poly(ε‐caprolactone)‐block‐poly[2‐(dimethylamino)ethyl methacrylate] (mPEG‐b‐PCL‐b‐PDMAEMA or abbreviated as mPEG‐b‐PCL‐b‐PDMA) were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization. The chemical structures and compositions of these copolymers have been characterized by Fourier transform infrared spectroscopy, 1H NMR, and thermogravimetric analysis. The molecular weights of the triblock copolymers were obtained by calculating from 1H NMR spectra and gel permeation chromatography measurements. Subsequently, the self‐assembly behavior of these copolymers was investigated by fluorescence probe method and transmission electron microscopy, which indicated that these amphiphilic triblock copolymers possess distinct pH‐dependent critical aggregation concentrations and can self‐assemble into micelles or vesicles in PBS buffer solution, depending on the length of PDMA in the copolymer. Agarose gel retardation assays demonstrated that these cationic nanoparticles can effectively condense plasmid DNA. Cell toxicity tests indicated that these triblock copolymers displayed lower cytotoxicity than that of branched polyethylenimine with molecular weight of 25 kDa. In addition, in vitro release of Naproxen from these nanoparticles in pH buffer solutions was conducted, demonstrating that higher PCL content would result in the higher drug loading content and lower release rate. These biodegradable and biocompatible cationic copolymers have potential applications in drug and gene delivery. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1079–1091, 2010  相似文献   

19.
Deoxybenzoin‐based copolymers containing various relative ratios of arylate and phosphonate units in the backbone were synthesized by solution polycondensation. These copolymers were characterized by gel permeation chromatography, Fourier Transform infrared spectrometry, and proton, carbon, and phosphorous nuclear magnetic resonance spectroscopy (1H, 13C, and 31P NMR). Pyrolysis combustion flow calorimetry (PCFC) performed on these copolymers revealed their very low heat release capacity, making them attractive for applications in which halogen‐free, low flammability materials are desired. Integration of phosphonate units into the polymer backbone is advantageous for achieving high molecular weight polymers with solution processbility while retaining the low flammability inherent to deoxybenzoin‐based polymers. Char yields greater than 50% and heat release capacities of 40–60 J/g K, were observed for these copolymers by PCFC. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4573–4580, 2007  相似文献   

20.
Reversible addition fragmentation chain transfer polymerization afforded triple hydrogen‐bonding block copolymers (PBA‐b‐PDAD) with well‐controlled molecular weight and molecular weight distributions (1.2–1.4). The complexation via specific hydrogen bonding between these block copolymers in CHCl3 provided an unprecedented approach for the formation of spherical vesicles. Atomic force microscopy and dynamic light‐scattering measurements revealed that the resultant polymeric vesicles were about 100 nm in radius. Triple hydrogen‐bonding interactions between maleimide and PBA‐b‐PDAD resulted in the dissociation of these spherical vesicles, facilitating the guest molecule recognition. The hydrogen‐bonding interaction between maleimide and the PBA‐b‐PDAD was further confirmed by 1H NMR and FTIR spectra. These results indicated that these vesicles of triple hydrogen‐bonding block copolymer could be a potential new vehicle for molecular recognition. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1633–1638  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号