首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 738 毫秒
1.
The mechanical properties in shear of unfilled and nanoparticle‐filled polydimethylsiloxane (PDMS) networks are reported. The effect of silicate‐based nanoparticles on the mechanical response was studied as functions of rate and temperature using the time–temperature superposition principle. An apparent yielding phenomenon was observed in the filled polymer in spite of the more typical elastomeric behavior exhibited by the pure PDMS network. The time–temperature superposition principle was applied to capture the shear strain rate (10?4–10?1 s?1) and temperature (?40 to 60°C) dependence of the stress response of the filled PDMS at different strains and at the yield point. A power‐law relationship was found to adequately describe the resulting master curves for yield stress in shear. Using a triangular shear displacement profile at 10?2 s?1, the effect of temperature (?20 to 80°C) on the recovery from a particularly pronounced Mullins effect was investigated as a function of rest time. Given adequate rest time (between 10 and 102 min), recovery was observed for the temperature range studied. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

2.
Samples of ultra‐high molecular weight polyethylene, in which the chain topology within the amorphous component was altered using two‐stage processing, including crystallization at high pressure in the first step, were produced and their deformation behavior in the plane‐strain compression was studied. Deformation and recovery experiments demonstrated that the state of the molecular network governed by entanglement density is one of the primary parameters controlling the response of the material on the imposed strain, especially at moderate and high strains. Any change in the concentration of entanglements markedly influences the shape of the true stress–true strain curve. The strain hardening modulus decreases while the onset of strain hardening increases with a decrease of the entanglement density within the amorphous component. Density of entanglements also influences the amount of rubber‐like recoverable deformation and permanent plastic flow. In material of the reduced concentration of entanglements permanent flow appears easier and sets in earlier than in the material with a higher entanglement density, becoming a favorable deformation mechanism at moderate strains. As a result, strong strain hardening is postponed to higher strain when compared with the samples of equilibrium entanglement density. In the samples of an increased entanglement density the molecular network becomes stiffer, with a reduced ability of strain induced disentangling of chains. Consequently, there is a less permanent flow and strain hardening begins earlier than in the reference material of an unaltered chain topology. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 276–285, 2010  相似文献   

3.
The stress‐strain response of low‐crystallinity ethylene‐octene (EO) and ethylene‐styrene (ES) copolymers with 7–20 mol % comonomer was compared over a temperature range that spanned the glass‐transition and crystal melting regions. Above the onset temperature of the glass transition, the copolymers exhibited elastomeric behavior with low initial modulus, uniform deformation to high strains, and high recovery after the stress was released. In the glass‐transition range, an initial low‐stress elastomeric response was followed by a distinct “bump” in the stress‐strain curve. On the basis of the temperature and rate dependence of the stress‐strain curve, local strain‐rate measurements, local temperature changes, and recovery characteristics, the “bump” was identified as high strain yielding. Hence, the stress‐strain curve sequentially exhibited the features of elastomeric and plastic deformation. Following high strain yielding, strain hardening dramatically increased the fracture strength. This behavior was defined as elastomeric‐plastic. Elastomeric‐plastic behavior in the broad glass‐transition range constituted a gradual transition from elastomeric behavior at higher temperatures to low‐temperature plastic behavior with high modulus and macroscopic necking. Because of the lower glass‐transition temperature of EO, ?40 °C as compared with ?10 °C for ES, the onset of elastomeric‐plastic behavior occurred at a significantly lower temperature. The concept of a network of flexible chains with fringed micellar crystals serving as the multifunctional junctions that provides the structural basis for elastomeric behavior of low‐crystallinity ethylene copolymers was extended to elastomeric‐plastic behavior by considering a network with a fraction of rigid, glassy chains. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 142–152, 2002  相似文献   

4.
Submitted to large sinusoidal strains, filled elastomers not only show a decrease in their storage modulus — the Payne effect, but also a nonlinear behavior — their response is not sinusoidal anymore and involves strain‐stiffening. We show in this study that the two effects can be separated thanks to large amplitude oscillatory shear experiments. The stress signal of filled elastomers consisting of a dispersion of silica particles into a polymeric matrix was decomposed into an elastic and a viscous part and we could observe simultaneously the Payne effect and a strain‐stiffening phenomenon. We showed that the strain‐stiffening was correlated with the Payne effect but came from various intricated effects. It most probably also has its origins in the finite extensibility of the polymer chains confined between solid particles, where the strain is larger. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

5.
The study of flow of non‐Newtonian fluids in porous media is very important and serves a wide variety of practical applications in processes such as enhanced oil recovery from underground reservoirs, filtration of polymer solutions and soil remediation through the removal of liquid pollutants. These fluids occur in diverse natural and synthetic forms and can be regarded as the rule rather than the exception. They show very complex strain and time dependent behavior and may have initial yield‐stress. Their common feature is that they do not obey the simple Newtonian relation of proportionality between stress and rate of deformation. Non‐Newtonian fluids are generally classified into three main categories: time‐independent whose strain rate solely depends on the instantaneous stress, time‐dependent whose strain rate is a function of both magnitude and duration of the applied stress and viscoelastic which shows partial elastic recovery on removal of the deforming stress and usually demonstrates both time and strain dependency. In this article, the key aspects of these fluids are reviewed with particular emphasis on single‐phase flow through porous media. The four main approaches for describing the flow in porous media are examined and assessed. These are: continuum models, bundle of tubes models, numerical methods and pore‐scale network modeling. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

6.
Double‐network (DN) gels subjected to cyclic deformation (stretching up to a fixed strain followed by retraction down to the zero stress) demonstrate a monotonic decrease in strain with time (self‐recovery). Observations show that the duration of total recovery varies in a wide interval (from a few minutes to several days depending on composition of the gel), and this time is strongly affected by deformation history. A model is developed for the kinetics of self‐recovery. Its ability to describe stress–strain diagrams in cyclic tests with various periods of recovery is confirmed by comparison with observations on several DN gels. Numerical simulation reveals pronounced enhancement of fatigue resistance in multi‐cycle tests with stress‐ and strain‐controlled programs when subsequent cycles of deformation are interrupted by intervals of recovery. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 438–453  相似文献   

7.
A siloxane‐containing diphenol is synthesized from 1,1,3,3‐tetramethyldisiloxane and o‐allylphenol, followed by the Mannich condensation with aniline, methylamine, and formaldehyde yielding two siloxane‐containing benzoxazines. The onset polymerization temperature of aniline‐based benzoxazine is higher than that of the methylamine counterpart. The dynamic mechanical properties of the polybenzoxazines depend on the structure of the starting primary amines. Both polybenzoxazines exhibit one‐way dual‐shape memory behavior in response to changes in temperature, and they show excellent shape fixity ratios in bending, tension, and tensile stress–strain tests, high shape recovery ratios in bending and tension tests, but relatively low shape recovery ratios in tensile stress–strain test. The network chain segments including the alkylsiloxane units serve as a thermal control switch based on the glass transition temperatures (39 and 53 °C) for the polybenzoxazines. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1255–1266  相似文献   

8.
The tensile stress–strain behavior of Nafion 117 and sulfonated poly(arylene ether sulfone) copolymer (BPSH35) membranes were explored with respect to the effects of the strain rate, counterion type, molecular weight, and presence of inorganic fillers. The yielding properties of the two films were most affected by the change in the strain rate. The stress–strain curves of Nafion films in acid and salt forms exhibited larger deviations at strains above the yield strain. As the molecular weight of the BPSH35 samples increased, the elongation at break improved significantly. Enhanced mechanical properties were observed for the composite membrane of BPSH35 and zirconium phenylphosphonate (2% w/w) in comparison with its matrix BPSH35 film. The stress‐relaxation behavior of Nafion and BPSH35 membranes was measured at different strain levels and different strain rates. Master curves were constructed in terms of plots of the stress‐relaxation modulus and time on a double‐logarithm scale. A three‐dimensional bundle‐cluster model was proposed to interpret these observations, combining the concepts of elongated polymer aggregates, proton‐conduction channels, and states of water. The rationale focused on the polymer bundle rotation/interphase chain readjustment before yielding and polymer aggregate disentanglements and reorientation after yielding. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1453–1465, 2006  相似文献   

9.
Long term mechanical behavior of polyethylene (PE) is of great importance especially in cases where structural integrity is required. In order to predict characteristics of the mechanical behavior of PE, it is necessary to fully understand the molecular structure of the employed resins. In this study, evaluation of several micromolecular properties of PE is conducted. These properties influence an important performance indicator of PE for structural applications, namely, the environmental stress cracking resistance (ESCR). ESCR in PE resins occurs through a slow crack growth mechanism under low applied stresses and long periods of time. This property is usually assessed by unreliable and time consuming testing methods such as the notch constant load test (NCLT) on notched PE specimens in the presence of an aggressive fluid at elevated temperatures. In the work presented herein, relationships between molecular structure and material response characteristics, mainly between molecular weight properties and short chain branching content in relation to strain hardening behavior of PE resins, were investigated based on results from tensile experiments. Inter-lamellar entanglements are believed to be the main feature controlling slow crack growth of PE. Extent of entanglements and entanglement efficiency has been investigated by monitoring the strain hardening behavior of PE resins in solid state through a uniaxial tensile test. The hardening stiffness (HS) test for prediction of ESCR was refined and improved to cover a broader range of PE resins, along with easier sample preparation, and faster testing. The improved test offers a more reliable and consistent ESCR picture without the drawbacks of the subjective notching process and ad-hoc presence of aggressive fluids.  相似文献   

10.
We recently discovered that shearing particle‐reinforced rubbers in oscillation at a frequency fa at a small strain γa (e.g., ~1% strain) for time ta can often produce a spectrum hole or drop in the strain‐dependent dissipation spectra of the materials. The location of the hole (or localized perturbation in the loss modulus or loss tangent) depends on the aging strain amplitude γa. The depth of this hole is influenced by both the oscillatory aging frequency fa and the aging duration ta, and follows a simple power relationship of the product of fa and ta. The exponent for the power relationship is a function of filler concentration. These attributes of the spectral hole in filled rubbers are not sensitive to the frequency used to postanalyze the hole. This new memory effect occurs at very small strains and involves material stiffening during the strain aging, and both of those features are quite different from the Mullins effect in filled elastomers. We interpret this newly discovered memory character of filled rubbers from a much broader concept of structure pinning in a condensed frustrated system and consider that the agglomeration of filler particles in rubber matrix shares common physics with granular materials and glass‐forming materials. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 859–869, 2010  相似文献   

11.
The deformation and fracture behavior under uniaxial tension was characterized for P(VDF‐TrFE) 68/32 mol % copolymer films prepared under two different processing conditions. It was found that the copolymer films prepared by solution casting and then annealing show a typical polymeric brittle fracture feature. For the copolymer films prepared by stretching the solution‐cast films and then annealing process, a typical linearly strengthening stage occurs in the stress–strain curve after yielding, and the polymer film samples fracture at a much larger maximum strain and a higher tensile strength than those prepared by the former process. SEM observation and XRD analysis were carried out to examine the morphology and microstructure change during uniaxial tension. The results show that for the stretched film samples, the polymer chains undergo slipping or further reorientation during uniaxial tension, causing the increase of the peak intensity in the X‐ray diffraction pattern. For the directly annealed ones, no yielding phenomenon is observed and there is no apparent X‐ray diffraction intensity change. It was suggested that the highly‐oriented fibril structure of the stretched film samples contributes to the linearly strengthening stage after yielding in the stress–strain curve. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3255–3260, 2005  相似文献   

12.
The solid‐state structure and properties of homogeneous copolymers of propylene and 1‐octene were examined. Based on the combined observations from melting behavior, dynamic mechanical response, morphology with primarily atomic force microscopy, X‐ray diffraction, and tensile deformation, a classification scheme with four distinct categories is proposed. The homopolymer constitutes Type IV. It is characterized by large α‐positive spherulites with thick lamellae, good lamellar organization, and considerable secondary crystallization. Copolymers with up to 5 mol % octene, with at least 28 wt % crystallinity, are classified as Type III. Like the homopolymer, these copolymers crystallize as α‐positive spherulites, however, they have smaller spherulites and thinner lamellae. Both Type IV and Type III materials exhibit thermoplastic behavior characterized by yielding with formation of a sharp neck, cold drawing, strong strain hardening, and small recovery. Copolymers classified as Type II have between 5 and 10 mol % octene with crystallinity in the range of 15–28%. Type II materials have smaller impinging spherulites and thinner lamellae than Type III copolymers. Moreover, the spherulites are α‐negative, meaning that they exhibit very little crystallographic branching. These copolymers also contain predominately α‐phase crystallinity. The materials in this category have plastomeric behavior. They form a diffuse neck upon yielding and exhibit some recovery. Type I copolymers have more than 10 mol % octene and less than 15% crystallinity. They exhibit a granular texture with the granules often assembled into beaded strings that resemble poorly developed lamellae. Type I copolymers crystallize predominantly in the mesophase. Materials belonging to this class deform with a very diffuse neck and also exhibit some recovery. They are identified as elastoplastomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4357–4370, 2004  相似文献   

13.
A new theoretical approach based on the modified three‐element Eyring‐Halsey model was developed for the derivation of an equation describing the thermally induced recovery of predeformed and crystallized crosslinked polymers. The proposed approach takes into account the influence of crystallizable covalent network and of entangled slipped molecular chains. Modeling of thermally induced shape‐memory (SM) recovery strain and SM recovery rate detected at constant heating rate has been successfully performed for nearly linear and two short‐chain branched polyethylenes, which were crosslinked by peroxide. The values of material constants determined by fitting agree with the estimations existing in literature. Fitting results have shown that increase of degree of branching and crosslink density accompanied with reducing crystallinity results in increasing contribution of the entangled slipped chains to the total stored SM strain. The physical sense of main fitting parameters and their dependences on the material constants such as crystallinity are discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 815–822  相似文献   

14.
Monodisperse size colloidal particles varying in chemical composition were synthesized by emulsifier‐free emulsion polymerization. Using a stress‐controlled rheometer, the rheological behavior of colloidal suspensions in a low molecular weight liquid polysulfide was investigated. All suspensions exhibited shear thinning behavior. The shear viscosity, dynamic moduli, and yield stress increased as interactions between particles and matrix increased. The rheological properties associated with network buildup in the suspensions were sensitively monitored by a kinetic recovery experiment. We propose that interfacial interactions by polar and hydrogen bonding between particles and matrix strongly promote affinity of matrix polymer to the filler particles, resulting in adsorption or entanglement of polymer chains on the filler surface. A network structure was formed consisting of particles with an immobilized polymer layer on the particle surface with each particle floc acting as a temporary physical crosslinking site. As the interfacial interaction increases, the adsorbed layer thickness on the filler particles, hence, the effective particle volume fraction, increases. As a result, the rheological properties were enhanced in the order PS < PMMA < PSVP. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 815–824, 1999  相似文献   

15.
Coarse‐grained molecular dynamics simulations are used to investigate the adsorption behavior of monodisperse and bidisperse polymer chains on the nanoparticle (NP) surface at various polymer–NP interactions, chain lengths, and stiffness. At a strong polymer–NP interaction, long chains preferentially occupy interfacial region and squeeze short chains out of the interfacial region. Semiflexible chains with proper stiffness wrap NPs dominantly in a helical fashion, whereas fully flexible chains constitute the surrounding matrix. As chain stiffness increases, the results of the preferential adsorption are the opposite. The chain‐length or chain‐stiffness‐induced selective adsorption behavior of polymer chains in the polymer–NP interfacial region relies on a delicate competition between entropic and enthalpic contributions to the total free energy. These results could provide insights into polymer–NP interfacial adsorption behavior and guide the design of high‐performance nanocomposites. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1829–1837  相似文献   

16.
A material strained beyond its yield point typically suffers substantial irrecoverable deformation. Surprisingly, this is not the case for ethylene/methacrylic acid (E/MAA) copolymers and ionomers, for which significant permanent deformation does not result until the applied strain exceeds 50–150%, far beyond the yield strain of 5–10%. At room temperature, strain recovery is complete on the order of hours or days following the removal of the applied load. Interestingly, the onset of permanent deformation coincides with a broad maximum or shoulder in the plot of stress versus strain. Two‐dimensional X‐ray scattering studies of both initially isotropic samples and highly aligned blown films reveals that this “second yield shoulder,” commonly observed in the stress–strain curves of ethylene/α‐olefin copolymers, is fundamentally associated with polyethylene crystal fracture, resulting in fragments of reduced lateral extent. Connections formed between these crystalline fragments lock in the deformed conformations of the amorphous intercrystalline segments, preventing the specimen from retracting to its initial dimensions. Additional recovery is possible through heating; complete melting of the deformed specimens results in full recovery up to applied strains of 200%, beyond which strain‐induced chain disentanglement begins. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1588–1598, 2009  相似文献   

17.
Transparent poly(urethane urea) (TPUU) materials offer an avenue to enable material designs with potential to achieve simultaneous enhancements in both physical and mechanical properties. To optimize the performance required for each application, the molecular features that influence the microstructure, the glass transition temperature (Tg), the deformation mechanisms, and the mechanical deformation behavior must be understood and exploited. In this work, a comprehensive materials characterization of select model PUUs with tunable microstructures is addressed. Increasing the hard segment (HS) content increases the stiffness and flow stress levels, whereas altering the soft segment (SS) molecular weight from 2000 to 1000 g/mol leads to an enhanced phase mixing with a SS Tg shifted ~17 °K toward higher temperatures as well as broadening of the SS relaxation closer to room temperature. As a result, the 1K TPUU materials display greater rate‐dependent stiffening and strain hardening on mechanical deformation over the broad range of strain rates covered in this work (10?3 to 104 s?1). In such case of similar urea‐based HS content, the molar content of the urethane linkages, per stoichiometric requirements, is much higher in the 1K TPUUs than the 2K TPUUs. These additional urethane moieties lead to an increase in the extent of intermolecular interactions, via hydrogen bonding between the HS and the SS, providing not only further phase mixing and stronger rate sensitivity but also provide 1K TPUUs with drastically improved barrier properties. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

18.
The aim of the present study was to control entanglements in order to regulate the properties of polymeric solids. Initially, fabrication of polymeric solids with few entanglements was attempted. Films of the DNA–cationic surfactant, cetyltrimethylammonium bromide (CTAB) (DNA–CTA), were cast from ethanol solution at room temperature. Morphological examination of DNA–CTA complex films using atomic force microscopy (AFM) revealed that these films were constructed by particle‐like substances. Geometrical analysis of AFM images showed that the particle‐like substances were the aggregates of several DNA–CTA globules. Mechanical characterization suggested that there were fewer entanglements than with normal plastic films. Small angle X‐ray scattering experiments during annealing indicated that molecular motions were highly excited in the surface region of each particle. In conclusion, a globular polymeric film with fewer entanglements was fabricated. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 730–738  相似文献   

19.
In this study a series of hyperbranched modified shape‐memory polymers were subjected to constrained shape recoveries in order to determine their potential use as thermomechanical actuators. Materials were synthesized from a diglycidyl ether of bisphenol A as base epoxy and a polyetheramine and a commercial hyperbranched poly(ethyleneimine) as crosslinker agents. Hyperbranched polymers within the structure of the shape‐memory epoxy polymers led to a more heterogeneous network that can substantially modify mechanical properties. Thermomechanical and mechanical properties were analyzed and discussed in terms of the content of hyperbranched polymer. Shape‐memory effect was analyzed under fully and partially constrained conditions. When shape recovery was carried out with fixed strain a recovery stress was obtained whereas when it was carried out with a constraining stress the material performs mechanical work. Tensile tests at TgE′ showed excellent values of stress and strain at break (up to 15 MPa and almost 60%, respectively). Constrained recovery performances revealed rapid recovery stress generation and unusually high recovery stresses (up to 7 MPa) and extremely high work densities (up to 750 kJ/m3). The network structure of shape‐memory polymers was found to be a key factor for actuator‐like applications. Results confirm that hyperbranched modified‐epoxy shape memory polymers are good candidates for actuator‐like shape‐memory applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1002–1013  相似文献   

20.
Electroactive polymer energy harvesters are promising devices for the conversion of mechanical work to electrical energy. The performances of these devices are strongly dependent on the mechanical response of the polymeric material and on the type of electromechanical cycle, and these are limited by the occurrence of dielectric breakdown, compression induced wrinkling and electromechanical instability (pull‐in). To identify the optimal electromechanical cycle that complies with all of these limitations, we set‐up and solve a constraint optimization problem and we critically discuss the influence of material behavior of the polymer in the optimal performances of the energy harvesting device. Finally, we show that if the rate‐independent dissipative behavior of the polymer (Mullins effect) is neglected, the optimization procedure may lead to quite unsatisfactory predictions: by making reference to explicit experimental data from literature we show that an optimal harvesting cycle deduced by neglecting the Mullins effect is far from being optimal when this is taken in consideration. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1303–1314  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号